ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-02
    Description: Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif (LysM)-containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1 dimerization is critical for its activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Tingting -- Liu, Zixu -- Song, Chuanjun -- Hu, Yunfei -- Han, Zhifu -- She, Ji -- Fan, Fangfang -- Wang, Jiawei -- Jin, Changwen -- Chang, Junbiao -- Zhou, Jian-Min -- Chai, Jijie -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1160-4. doi: 10.1126/science.1218867.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654057" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/immunology/*metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Chitin/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Phosphorylation ; Plants, Genetically Modified ; Protein Multimerization ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry/genetics/*metabolism ; Receptors, Pattern Recognition/*chemistry/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-15
    Description: Nucleotide-binding and oligomerization domain-like receptor (NLR) proteins oligomerize into multiprotein complexes termed inflammasomes when activated. Their autoinhibition mechanism remains poorly defined. Here, we report the crystal structure of mouse NLRC4 in a closed form. The adenosine diphosphate-mediated interaction between the central nucleotide-binding domain (NBD) and the winged-helix domain (WHD) was critical for stabilizing the closed conformation of NLRC4. The helical domain HD2 repressively contacted a conserved and functionally important alpha-helix of the NBD. The C-terminal leucine-rich repeat (LRR) domain is positioned to sterically occlude one side of the NBD domain and consequently sequester NLRC4 in a monomeric state. Disruption of ADP-mediated NBD-WHD or NBD-HD2/NBD-LRR interactions resulted in constitutive activation of NLRC4. Together, our data reveal the NBD-organized cooperative autoinhibition mechanism of NLRC4 and provide insight into its activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Zehan -- Yan, Chuangye -- Liu, Peiyuan -- Huang, Zhiwei -- Ma, Rui -- Zhang, Chenlu -- Wang, Ruiyong -- Zhang, Yueteng -- Martinon, Fabio -- Miao, Di -- Deng, Haiteng -- Wang, Jiawei -- Chang, Junbiao -- Chai, Jijie -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):172-5. doi: 10.1126/science.1236381. Epub 2013 Jun 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23765277" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry ; Animals ; Apoptosis Regulatory Proteins/*antagonists & inhibitors/*chemistry ; Calcium-Binding Proteins/*antagonists & inhibitors/*chemistry ; Crystallography, X-Ray ; Mice ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-09
    Description: Recent studies have unequivocally associated the fat mass and obesity-associated (FTO) gene with the risk of obesity. In vitro FTO protein is an AlkB-like DNA/RNA demethylase with a strong preference for 3-methylthymidine (3-meT) in single-stranded DNA or 3-methyluracil (3-meU) in single-stranded RNA. Here we report the crystal structure of FTO in complex with the mononucleotide 3-meT. FTO comprises an amino-terminal AlkB-like domain and a carboxy-terminal domain with a novel fold. Biochemical assays show that these two domains interact with each other, which is required for FTO catalytic activity. In contrast with the structures of other AlkB members, FTO possesses an extra loop covering one side of the conserved jelly-roll motif. Structural comparison shows that this loop selectively competes with the unmethylated strand of the DNA duplex for binding to FTO, suggesting that it has an important role in FTO selection against double-stranded nucleic acids. The ability of FTO to distinguish 3-meT or 3-meU from other nucleotides is conferred by its hydrogen-bonding interaction with the two carbonyl oxygen atoms in 3-meT or 3-meU. Taken together, these results provide a structural basis for understanding FTO substrate-specificity, and serve as a foundation for the rational design of FTO inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Zhifu -- Niu, Tianhui -- Chang, Junbiao -- Lei, Xiaoguang -- Zhao, Mingyan -- Wang, Qiang -- Cheng, Wei -- Wang, Jinjing -- Feng, Yi -- Chai, Jijie -- England -- Nature. 2010 Apr 22;464(7292):1205-9. doi: 10.1038/nature08921. Epub 2010 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Biological Sciences, No. 7 Science Park Road, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20376003" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA, Single-Stranded/chemistry/metabolism ; Humans ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Proteins/*chemistry/genetics/*metabolism ; RNA/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Thymidine/analogs & derivatives/chemistry/metabolism ; Uracil/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-15
    Description: Brassinosteroids are essential phytohormones that have crucial roles in plant growth and development. Perception of brassinosteroids requires an active complex of BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED KINASE 1 (BAK1). Recognized by the extracellular leucine-rich repeat (LRR) domain of BRI1, brassinosteroids induce a phosphorylation-mediated cascade to regulate gene expression. Here we present the crystal structures of BRI1(LRR) in free and brassinolide-bound forms. BRI1(LRR) exists as a monomer in crystals and solution independent of brassinolide. It comprises a helical solenoid structure that accommodates a separate insertion domain at its concave surface. Sandwiched between them, brassinolide binds to a hydrophobicity-dominating surface groove on BRI1(LRR). Brassinolide recognition by BRI1(LRR) is through an induced-fit mechanism involving stabilization of two interdomain loops that creates a pronounced non-polar surface groove for the hormone binding. Together, our results define the molecular mechanisms by which BRI1 recognizes brassinosteroids and provide insight into brassinosteroid-induced BRI1 activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉She, Ji -- Han, Zhifu -- Kim, Tae-Wuk -- Wang, Jinjing -- Cheng, Wei -- Chang, Junbiao -- Shi, Shuai -- Wang, Jiawei -- Yang, Maojun -- Wang, Zhi-Yong -- Chai, Jijie -- R01 GM066258/GM/NIGMS NIH HHS/ -- R01GM066258/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Jun 12;474(7352):472-6. doi: 10.1038/nature10178.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory for Protein Sciences of Ministry of Education School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21666666" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*chemistry/*metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Brassinosteroids ; Cholestanols/chemistry/*metabolism ; Crystallography, X-Ray ; Enzyme Activation ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Protein Binding ; Protein Folding ; Protein Kinases/*chemistry/*metabolism ; Protein Structure, Tertiary ; Steroids, Heterocyclic/chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-27
    Description: Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a beta-strand from the island domain of PSKR, forming an anti-beta-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Jizong -- Li, Hongju -- Han, Zhifu -- Zhang, Heqiao -- Wang, Tong -- Lin, Guangzhong -- Chang, Junbiao -- Yang, Weicai -- Chai, Jijie -- England -- Nature. 2015 Sep 10;525(7568):265-8. doi: 10.1038/nature14858. Epub 2015 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. ; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ; School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26308901" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Arabidopsis/*chemistry ; Arabidopsis Proteins/*agonists/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Models, Molecular ; Mutation/genetics ; Peptide Hormones/chemistry/metabolism/pharmacology ; Plant Growth Regulators/*chemistry/metabolism/*pharmacology ; Plant Proteins/chemistry/metabolism/pharmacology ; Protein Binding ; Protein Kinases/chemistry/metabolism ; Protein Multimerization/drug effects ; Protein Stability ; Protein Structure, Secondary/drug effects ; Protein Structure, Tertiary/drug effects ; Protein-Serine-Threonine Kinases/chemistry/metabolism ; Receptors, Cell Surface/*agonists/*chemistry/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...