ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The Mars 2001 Odyssey Orbiter successfully completed the aerobraking phase of its mission on January 11, 2002. This paper discusses the support provided by NASA's Langley Research Center to the navigation team at the Jet Propulsion Laboratory in the planning and operational support of Mars Odyssey Aerobraking. Specifically, the development of a three-degree-of-freedom aerobraking trajectory simulation and its application to pre-flight planning activities as well as operations is described. The importance of running the simulation in a Monte Carlo fashion to capture the effects of mission and atmospheric uncertainties is demonstrated, and the utility of including predictive logic within the simulation that could mimic operational maneuver decision-making is shown. A description is also provided of how the simulation was adapted to support flight operations as both a validation and risk reduction tool and as a means of obtaining a statistical basis for maneuver strategy decisions. This latter application was the first use of Monte Carlo trajectory analysis in an aerobraking mission.
    Keywords: Computer Systems
    Type: AIAA Paper 2002-4537 , AIAA Atmospheric Flight Mechanics Conference and Exhibit; Aug 05, 2002 - Aug 08, 2002; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Aerocapture is a very useful capability for NASA that can be used across a wide range of planetary mission sizes and destinations. A substantial mass advantage may be realized through aerocapture maneuver implementation. The mass advantage is enabling for certain outer planet mission profiles. Aerocapture technology provides corollary benefits to the related applications of atmospheric entry and precision landing on worlds with atmospheres through aero/aerothermodynamic model validation, hypersonic guided flight, tps materials, and performance model validation. The ST9 Aerocapture flight validation will be sufficient to immediately infuse aerocapture technology into future NASA science missions. The advanced technologies being flight validated will enable the system level goal of performing an aerocapture maneuver. The advanced technologies include: The GN&C System, TPS materials, plus Advanced recession and heat flux sensors.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M09-0147 , 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 10, 2006 - Jul 12, 2006; Sacramento, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...