ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemical Engineering  (3)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 1597-1603 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The phenomenological analysis of the thermal inversion membrane formation through spinodal decomposition was further developed to include enthalpic and entropic contributions to the Flory-Huggins interaction parameter. We found that material and processing conditions can be lumped into two parameters. One is the Deborah Number, De, which takes into account the thermal quenching relative to the phase separation induction time. The other one, designated as an ε-parameter, takes into account the quenching temperature relative to the spinodal temperature and the ratio of the enthalpic to the entropic contributions to the Flory-Huggins interaction parameter. From the model system, we found that the dimensionless interdomain distance, δ, as a function of 1/De (which is proportional to the cooling rate) falls in a relatively narrow banded region for all practical values of ε. As 1/De approaches infinity, δ is asymptotic up to maximum value of 3.5. This means that membranes made under applicable conditions will have a ratio of pore sizes of no more than 3.5. Other assumptions of the model are: (1) the mobility is temperature-independent; (2) the mutual diffusivity is a linear function of temperature; and (3) the thermal history (Temperature vs. Time), can be represented as two successive linear functions.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 879-885 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A phenomenological model used in a previous work for spinodal decomposition of polymer-solvent systems is further analyzed. From the dimensionless form of the nonlinear Cahn-Hilliard equation, the dimensionless induction time is found to be a constant number for suddenly quenched systems. Computer simulation is carried out for prediction of early stage behavior with thermal history corresponding to a linear temperature drop followed by a constant temperature vs. time. In the areas of polymer membrane formation and phase separation studies, the universality of the constant dimensionless Induction time for suddenly quenched systems allows the determination of the minimum time needed for phase separation via spinodal decomposition. Also, simulation results for the double linear temperature history allows the convenient prediction of early stage spinodal decomposition behavior at every point of a membrane cross section undergoing thermal inversion phase separation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 1033-1041 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A nonlinear diffusion equation is used to study early-stage spinodal decomposition of polymer solutions, in relation to the membrane formation, in two dimensions. The effects of overall polymer composition and composition-dependent mobility and diffusivity are included in our simulations. Our results show a kinetically stable structure is established during the early stages, which corresponds to a circular range of peaks in the two-dimensional frequency spectrum. Such a spectrum is found to result in an interconnected cell structure in the two-dimensional real space. A decrease in the level of polymer interdomain interconnectedness is obtained as time increases, which indicates the influence of interfacial tension. As the overall polymer composition is increased, an increase in interdomain distances is observed, although the same early stage morphological structure is obtained. Finally, calculated interdomain distances from the two-dimensional simulation are larger than those obtained in equivalent one-dimensional model systems.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...