ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2010. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Diseases of Aquatic Organisms 88 (2010): 143-155, doi:10.3354/dao02146.
    Description: To understand the cause of death of 405 marine mammals stranded on Cape Cod and southeastern Massachusetts between 2000 and 2006, a system for coding final diagnosis was developed and categorized as (1) disease, (2) human interaction, (3) mass-stranded with no significant findings, (4) single-stranded with no significant findings, (5) rock and/or sand ingestion, (6) predatory attack, (7) failure to thrive or dependent calf or pup, or (8) other. The cause of death for 91 animals could not be determined. For the 314 animals that could be assigned a cause of death, gross and histological pathology results and ancillary testing indicated that disease was the leading cause of mortality in the region, affecting 116/314 (37%) of cases. Human interaction, including harassment, entanglement, and vessel collision, fatally affected 31/314 (10%) of all animals. Human interaction accounted for 13/29 (45%) of all determined gray seal Halichoerus grypus mortalities. Mass strandings were most likely to occur in northeastern Cape Cod Bay; 97/106 (92%) of mass stranded animals necropsied presented with no significant pathological findings. Mass strandings were the leading cause of death in 3 of the 4 small cetacean species: 46/67 (69%) of Atlantic white-sided dolphin Lagenorhynchus acutus, 15/21 (71%) of long-finned pilot whale Globicephala melas, and 33/54 (61%) of short-beaked common dolphin Delphinus delphis. These baseline data are critical for understanding marine mammal population health and mortality trends, which in turn have significant conservation and management implications. They not only afford a better retrospective analysis of strandings, but ultimately have application for improving current and future response to live animal stranding.
    Description: This work was supported by the National Oceanic and Atmospheric Administration (NOAA) John H. Prescott Program (NA03NMF4390046, NA05NMF4391165, NAO6NMF 4390130, NA17FX2054, NA16FX2053, NA03NMF4390479, NA04NMF4390044, NA05NMF4391157, and NA06NMF4390 164), the NOAA Coastal Ocean Program under award NA05NOS4781247, and the International Fund for Animal Welfare.
    Keywords: Disease ; Mass strandings ; Necropsy ; Cetaceans ; Pinnipeds
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-28
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lonati, G., Zitterbart, D. P., Miller, C. A., Corkeron, P. J., Murphy, C. T., & Moore, M. J. Investigating the thermal physiology of critically endangered North Atlantic right whales Eubalaena glacialis via aerial infrared thermography. Endangered Species Research, 48, (2022): 139–154, https://doi.org/10.3354/esr01193.
    Description: The Critically Endangered status of North Atlantic right whales Eubalaena glacialis (NARWs) warrants the development of new, less invasive technology to monitor the health of individuals. Combined with advancements in remotely piloted aircraft systems (RPAS, commonly ‘drones’), infrared thermography (IRT) is being increasingly used to detect and count marine mammals and study their physiology. We conducted RPAS-based IRT over NARWs in Cape Cod Bay, MA, USA, in 2017 and 2018. Observations demonstrated 3 particularly useful applications of RPAS-based IRT to study large whales: (1) exploring patterns of cranial heat loss and providing insight into the physiological mechanisms that produce these patterns; (2) tracking subsurface individuals in real-time (depending on the thermal stratification of the water column) using cold surface water anomalies resulting from fluke upstrokes; and (3) detecting natural changes in superficial blood circulation or diagnosing pathology based on heat anomalies on post-cranial body surfaces. These qualitative applications present a new, important opportunity to study, monitor, and conserve large whales, particularly rare and at-risk species such as NARWs. Despite the challenges of using this technology in aquatic environments, the applications of RPAS-based IRT for monitoring the health and behavior of endangered marine mammals, including the collection of quantitative data on thermal physiology, will continue to diversify.
    Description: All activities were conducted under NOAA permit 18355-01 and were approved by Woods Hole Oceanographic Institution’s Institutional Animal Care and Use Committee (IACUC). The RPAS pilot-in-command was certified through the United States Federal Aviation Admin-istration. We thank Amy Knowlton (Anderson Cabot Center for Ocean Life at the New England Aquarium) for photo-identifying individual North Atlantic right whales and Rocky Geyer (Woods Hole Oceanographic Institution) for providing and interpreting water temperature data relatedto the observations of thermal flukeprints (courtesy of the Massachusetts Water Resources Authority). We also appreciate constructive conversations with Iain Kerr (Ocean Alliance), Chris Zadra (Ocean Alliance), and Joy Reidenberg (Icahn School of Medicine at Mount Sinai). Funding was provided by a Woods Hole Oceanographic Research Opportunity grant, the North Pond Foundation, and NMFS NA14OAR4320158.
    Keywords: Cetaceans ; Drone ; Health ; Marine mammals ; Remote sensing ; Temperature ; UAVs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Physiology 5 (2017): cox061, doi:10.1093/conphys/cox061.
    Description: Recent studies have demonstrated that some hormones are present in baleen powder from bowhead (Balaena mysticetus) and North Atlantic right (Eubalaena glacialis) whales. To test the potential generalizability of this technique for studies of stress and reproduction in large whales, we sought to determine whether all major classes of steroid and thyroid hormones are detectable in baleen, and whether these hormones are detectable in other mysticetes. Powdered baleen samples were recovered from single specimens of North Atlantic right, bowhead, blue (Balaenoptera [B.]musculus), sei (B. borealis), minke (B. acutorostrata), fin (B. physalus), humpback (Megaptera novaeangliae) and gray (Eschrichtius robustus) whales. Hormones were extracted with a methanol vortex method, after which we tested all species with commercial enzyme immunoassays (EIAs, Arbor Assays) for progesterone, testosterone, 17β-estradiol, cortisol, corticosterone, aldosterone, thyroxine and tri-iodothyronine, representing a wide array of steroid and thyroid hormones of interest for whale physiology research. In total, 64 parallelism tests (8 species × 8 hormones) were evaluated to verify good binding affinity of the assay antibodies to hormones in baleen. We also tested assay accuracy, although available sample volume limited this test to progesterone, testosterone and cortisol. All tested hormones were detectable in baleen powder of all species, and all assays passed parallelism and accuracy tests. Although only single individuals were tested, the consistent detectability of all hormones in all species indicates that baleen hormone analysis is likely applicable to a broad range of mysticetes, and that the EIA kits tested here perform well with baleen extract. Quantification of hormones in baleen may be a suitable technique with which to explore questions that have historically been difficult to address in large whales, including pregnancy and inter-calving interval, age of sexual maturation, timing and duration of seasonal reproductive cycles, adrenal physiology and metabolic rate.
    Description: This work was supported by (1) the Center for Bioengineering Innovation at Northern Arizona University and (2) the New England Aquarium.
    Keywords: Baleen ; Cetaceans ; Hormones ; Marine mammals ; Reproduction ; Stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...