ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (4)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 7 (1987), S. 110-115 
    ISSN: 0886-1544
    Keywords: microtubules ; antitubulin ; particle translocalion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Microtubules have been demonstrated to be a substrate for organelle transport and particle translocation in vitro and in vivo. Subsequent to a previous report of inhibition of axonal transport of exogenous tracers in vivo using antiserum NS-20 against tubulin (Johnston et al: Brain Res. 1986), we now show disruption of particle movement in extruded squid axoplnsm using this unique immunological probe. Using video-enhanced contract-differential interference contrast (AVEC-DIC) microscopy, we examined the properties of particle movement along microtubules and demonstrated that bolh the velocity of particle movement and the numbers of particles moving are decreased in the presence of NS-20 antiserum or NS-20 affinity-purified antibodies but. not in the presence of another antiserum against tubulin. The amount of microtubule substrate does not change in the presence of any of the antisera. In conclusion, we suggest that NS-20 antibodies bind near or at a site on the tubulin molecule which is critical in the mechanism of particle transport, and provide a direct immunological probe to examine the mechanism of microtubule involvement in axonal transport.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0886-1544
    Keywords: microtubule-based motility ; dynein ; kinesin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: An antiserum against tubulin, NS20, has been previously shown to inhibit anterograde and retrograde axonal transport by 50% in vivo and in vitro. We report here that Protein A purified NS20 antibodies also attenuate sperm motility by 50% in demembranated sea urchin sperm. This inhibition is absorbed out by preincubating the NS20 antibodies with a biochemically purified porcine microtubule preparation, with recombinant Trypanosoma β- (but not α-) tubulin and most specifically, with a 37 amino acid (a.a.) synthetic peptide corresponding to a domain near (but not including) the porcine β-tubulin C terminus. Furthermore, addition of this β-tubulin peptide alone is sufficient to attenuate motility by 50% in demembranated sperm, indicating that this critical 37a.a. NS20 antigen is a motor binding domain. Together, the results suggest that at least two phenotypically distinct forms of microtubule-based motility, axonal transport and flagellar beating, are homologous at the fundamental level of the microtubule domains (the β-tubulin peptide and we suggest a distinct but similarly located α-tubulin domain) mediating the attachment of tubulin-associated motors.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 138 (1989), S. 267-272 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: BC3H1 muscle cells proliferate when grown in high concentrations of FBS (20%). Lowering the FBS concentration to 0.5% causes the cells to stop proliferating and is permissive for the morphological and biochemical differentiation of BC3H1 cells. Exposure of differentiated BC3H1 myocytes to high concentrations of serum or to the purified growth factors FGF or TGF-b induced a shutdown of this differentiation program but did not induce cell proliferation (Olson et al.,J. Cell Biol.,103: 1799-1805, 1986; Lathrop et al., Cell Biol.,100:1540-1547, 1985, and Cell Biol., 101:2194-2198,1985). We explored the possibility that BC3H1 cells require factors to act synergistically to induce proliferation. We found that EGF and FGF function in a synergistic fashion to stimulate BC3H1 proliferation. Moreover, the temporal requirement for these growth factors suggest that they are functioning as competence and progression factors for BC3H1 cell proliferation.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 127 (1986), S. 403-409 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Interleukin 3 (IL-3) is a regulatory glycoprotein required for the proliferation and differentiation of cells from many if not all hemopoietic lineages. With the emergence of the competence-progression model of cell proliferation, which predicts that growth factors function at specific stages of the cell cycle, we examined the possibility that IL-3 functions at a specific stage of the cell cycle. C-63 cells were developed as a cell line from normal murine bone marrow. They have a mast cell phenotype and require pokeweed-stimulated spleen cell-conditioned medium (CM), a rich source of IL-3, for their continued growth. Exponentially growing cells were transferred from growth medium, which contains CM, to medium lacking CM or IL-3. After 24 hours, cell viability had decreased 40-50%. The remaining viable cells did not incorporate 3H-thymidine, and displayed a single peak at G1 in a DNA histogram. Restimulation of these cells with CM or IL-3 resulted in a dramatic rise in 3H-thymidine uptake 20-24 hours after restimulation. DNA histograms of restimulated cultures indicated that the cells were progressing in a wave-like fashion throughout the remainder of the cell cycle. The length of time necessary for cells to be in contact with CM or IL-3 before they could progress into the remainder of the cell cycle was also examined. Cells incubated with CM or IL-3 for less than 16 hours could not progress into S phase, whereas cells incubated for 16 hours or longer could progress into S phase and through the remainder of the cell cycle. These data suggest that IL-3 exerts its function at a specific stage of the cell cycle.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...