ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 19 (1990), S. 1-9 
    ISSN: 1432-1017
    Keywords: Assembly ; Caged-GTP ; Microtubules ; Oscillation ; Synchrotron radiation ; Tubulin ; X-ray scattering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Microtubule assembly and oscillations have been induced using the rapid liberation of GTP by UV flash photolysis of caged-GTP and monitored by time-resolved X-ray scattering. The flash photolysis method of achieving assembly conditions is much faster than the temperature jump method used earlier (msec vs. s range). However, the structural transitions and their rates are similar to those described previously. This means that the rates of the transitions in microtubule assembly observed before are determined by the protein itself, and not by the rate at which assembly conditions are induced. The advantages and limitations of using the photolysis of caged-GTP in microtubule assembly studies are compared with temperature jump methods. Caged-GTP itself reduces the rate of microtubule assembly and oscillations at mM concentrations, consistent with a weak interaction between the nucleotide analogue and the protein. X-rays are capable of slowly liberating GTP and other breakdown products from caged-GTP, even in the absence of UV flash photolysis, thus causing an apparent “X-ray-induced” microtubule assembly. This effect depends on the X-ray dose but is independent of the caged-GTP concentrations used here (mM range), suggesting that the breakdown of caged-GTP is caused not by the direct absorption of X-rays by the compound but by another intermediate reaction such as the generation of radicals by the X-rays.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...