ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The V-Band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for intersatellite communications. As a first effort to develop a high-efficiency V-band TWT, variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite the high-power capabilities of the ring-plane TWT, disadvantages of low bandwidth and high voltage requirements have until now prevented its acceptance outside the laboratory. In this paper, we use the three-dimensional electromagnetic simulation code MAFIA to investigate methods of increasing the bandwidth and lowering the operating voltage. Dispersion, impedance, and attenuation calculations for various geometric variations and loading distributions were performed. Based on the results of the variations, a circuit termed the finned-ladder TWT slowwave circuit was designed and is compared here to the scaled ring-plane prototype and the conventional ferruled coupled-cavity TWT circuit over the V-band frequency range.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-TM-106949 , E-9687 , NAS 1.15:106949 , 1995 International Conference on Plasma Science; Jun 05, 1995 - Jun 08, 1995; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...