ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Renal osteodystrophy ; Hyperparathyroidism ; Adenylate cyclase ; Phospholipase C ; 1,25-Dihydroxyvitamin D3 ; Bone turnover ; Histomorphometry ; Rat model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract Predicting the course of parathormone (PTH)-elicited bone turnover in both humans and experimental rat models with moderate chronic uremia, using only standard clinical chemistry analyses, is often difficult. Consequently, rat bone from 1+2/3 nephrectomized animals, after 230 days of progressive renal failure, was examined for PTH-stimulated adenylate cyclase (AC) and phospholipase C (PLC) activities. Correlations to biological parameters related to the function of bone and kidney were made. Reduced renal function was demonstrated by increased serum creatinine; circulating 1,25 dihydroxyvitamin D3 below detection level; diminished renal PTH-elicited AC activity; and decreased urinary cAMP excretion. PTH-activated renal PL-C was also reduced. However, no significant differences were seen in urine creatinine, calcium, phosphate, and hydroxyproline, nor in serum PTH, alkaline phosphatase, calcium, and phosphate. Notwithstanding, renal osteodystrophy developed as estimated by increased plasticity of the long bones, as well as reduction of the diaphyseal (Dd) and inner femoral midshaft (Di) diameters. Femoral cancellous bone exhibited a substantial elevation of both eroded surface (ES) and osteoid surface (OS) as well as a marked reduction in trabecular bone volume (TBV). Calvarial PTH-activated AC was enhanced, whereas corresponding PL-C was markedly reduced. PTH-enhanced AC correlated positively with ES and negatively with Di, respectively. PTH-enhanced PL-C, however, correlated positively with bone calcium content and negatively with ES. Our results indicate that bone modeling and remodeling are to a large extent related to PTH-elicited signaling systems, and cannot easily be predicted by standard clinical chemistry analyses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...