ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 3515–3531, doi:10.1175/JCLI-D-11-00028.1.
    Description: The study examined global variability of air–sea sensible heat flux (SHF) from 1980 to 2009 and the large-scale atmospheric and ocean circulations that gave rise to this variability. The contribution of high-latitude wintertime SHF was identified, and the relative importance of the effect of the sea–air temperature difference versus the effect of wind on decadal SHF variability was analyzed using an empirical orthogonal function (EOF) approach. The study showed that global SHF anomalies are strongly modulated by SHF at high latitudes (poleward of 45°) during winter seasons. Decadal variability of global wintertime SHF can be reasonably represented by the sum of two leading EOF modes, namely, the boreal wintertime SHF in the northern oceans and the austral wintertime SHF in the southern oceans. The study also showed that global wintertime SHF is modulated by the prominent modes of the large-scale atmospheric circulation at high latitudes. The increase of global SHF in the 1990s is attributable to the strengthening of the Southern Hemisphere annular mode index, while the decrease of global SHF after 2000 is due primarily to the downward trend of the Arctic Oscillation index. This study identified the important effects of wind direction and speed on SHF variability. Changes in winds modify the sea–air temperature gradient by advecting cold and dry air from continents and by imposing changes in wind-driven oceanic processes that affect sea surface temperature (SST). The pattern of air temperature anomalies dominates over the pattern of SST anomalies and dictates the pattern of decadal SHF variability.
    Description: The study is supported by the NOAA Office of Climate Observations (OCO) and the WHOI Arctic Climate Initiative. X. Song acknowledges the support from the China Scholarship Council, National Natural Science Foundation of China (NSFC) (40930844, 40976004, and 40921004) and the Ministry of Education’s 111 Project (B07036).
    Description: 2012-11-15
    Keywords: Atmosphere-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 633-647, doi:10.1175/JPO-D-16-0089.1.
    Description: Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles of diabatic and adiabatic processes in the volume and heat budgets of the subtropical gyre are investigated by projecting data into temperature coordinates as volumes of water using an Argo-based climatology and an ocean state estimate (ECCO version 4). This highlights that variations in the subtropical gyre volume budget are predominantly set by transport divergence in the gyre. A strong correlation between the volume anomaly due to transport divergence and the variability of both thermocline depth and Ekman pumping over the gyre suggests that wind-driven heave drives transport anomalies at the gyre boundaries. This wind-driven heaving contributes significantly to variations in the heat content of the gyre, as do anomalies in the air–sea fluxes. The analysis presented suggests that wind forcing plays an important role in driving interannual variability in the Atlantic meridional overturning circulation and that this variability can be unraveled from spatially distributed hydrographic observations using the framework presented here.
    Description: DGE was supported by a Natural Environment Research Council studentship award at the University of Southampton. JMT’s contribution was supported by the U.S. National Science Foundation (Grant OCE-1332667). GF’s contribution was supported by the U.S. National Science Foundation through Grant OCE-0961713 and by the U.S. National Oceanic and Atmospheric Administration through Grant NA10OAR4310135. The contributions of JDZ and AJGN were supported by the NERC Grant ‘‘Climate scale analysis of air and water masses’’ (NE/ K012932/1). ACNG gratefully acknowledges support from the Leverhulme Trust, the Royal Society, and the Wolfson Foundation. LY was supported by NASA Ocean Vector Wind Science Team (OVWST) activities under Grant NNA10AO86G.
    Keywords: North Atlantic Ocean ; Atmosphere-ocean interaction ; Ekman pumping/transport ; Ocean circulation ; Water masses ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(17), (2020): 7697-7714, https://doi.org/10.1175/JCLI-D-20-0115.1.
    Description: The decadal to multidecadal mixed layer variability is investigated in a region south of the Kuroshio Extension (130°E–180°, 25°–35°N), an area where the North Pacific subtropical mode water forms, during 1948–2012. By analyzing the mixed layer heat budget with different observational and reanalysis data, here we show that the decadal to multidecadal variability of the mixed layer temperature and mixed layer depth is covaried with the Atlantic multidecadal oscillation (AMO), instead of the Pacific decadal oscillation (PDO). The mixed layer temperature has strong decadal to multidecadal variability, being warm before 1970 and after 1990 (AMO positive phase) and cold during 1970–90 (AMO negative phase), and so does the mixed layer depth. The dominant process for the mixed layer temperature decadal to multidecadal variability is the Ekman advection, which is controlled by the zonal wind changes related to the AMO. The net heat flux into the ocean surface Qnet acts as a damping term and it is mainly from the effect of latent heat flux and partially from sensible heat flux. While the wind as well as mixed layer temperature decadal changes related to the PDO are weak in the western Pacific Ocean. Our finding proposes the possible influence of the AMO on the northwestern Pacific Ocean mixed layer variability, and could be a potential predictor for the decadal to multidecadal climate variability in the western Pacific Ocean.
    Description: Xiaopei Lin is supported by the China’s national key research and development projects (2016YFA0601803) and the National Natural Science Foundation of China (41925025 and U1606402). Baolan Wu is supported by the China Scholarship Council (201806330010). Lisan Yu thanks NOAA for support for her study on climate change and variability.
    Keywords: Atmosphere-ocean interaction ; Boundary currents ; Hadley circulation ; Ocean dynamics ; Teleconnections
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...