ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 183 (1998), S. 753-758 
    ISSN: 1432-1351
    Keywords: Key words Tonic depolarization ; EPSP ; Excitatory amino acids ; Locomotion; ; Frequency control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract This paper investigates the proposal that the frequency of the swimming central pattern generator in young Xenopus tadpoles is partly determined by the population of glutamatergic premotor interneurons active on each cycle. During fictive swimming spinal neurons also receive cholinergic and electrotonic excitation from motoneurons. As frequency changes during swimming we make two predictions: first, since most motoneurons fire very reliably at all frequencies, the electrotonic and nicotinic drive from motoneurons should remain constant, and second, when swimming frequency decreases, the glutamatergic drive should decrease as the number of active premotor excitatory interneurons decreases. We have tested these predictions by measuring the excitatory synaptic drive to motoneurons as frequency changes during fictive swimming. The components of synaptic drive were revealed by the local microperfusion of strychnine together with different excitatory antagonists. After blocking the nicotinic acetylcholine receptor, the mainly glutmatergic excitatory synaptic drive still changed with frequency. However, when glutamate receptors or all chemical transmission was blocked, excitation did not change with frequency. Our predictions are confirmed, suggesting that premotor excitatory interneurons are a major factor in frequency control in the tadpole central pattern generator and that motoneurons provide a stable background excitation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1589–1610, doi:10.1175/JPO-D-12-0173.1.
    Description: This study investigates the exchange of momentum between the atmosphere and ocean using data collected from four oceanic field experiments. Direct covariance estimates of momentum fluxes were collected in all four experiments and wind profiles were collected during three of them. The objective of the investigation is to improve parameterizations of the surface roughness and drag coefficient used to estimate the surface stress from bulk formulas. Specifically, the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk flux algorithm is refined to create COARE 3.5. Oversea measurements of dimensionless shear are used to investigate the stability function under stable and convective conditions. The behavior of surface roughness is then investigated over a wider range of wind speeds (up to 25 m s−1) and wave conditions than have been available from previous oversea field studies. The wind speed dependence of the Charnock coefficient α in the COARE algorithm is modified to , where m = 0.017 m−1 s and b = −0.005. When combined with a parameterization for smooth flow, this formulation gives better agreement with the stress estimates from all of the field programs at all winds speeds with significant improvement for wind speeds over 13 m s−1. Wave age– and wave slope–dependent parameterizations of the surface roughness are also investigated, but the COARE 3.5 wind speed–dependent formulation matches the observations well without any wave information. The available data provide a simple reason for why wind speed–, wave age–, and wave slope–dependent formulations give similar results—the inverse wave age varies nearly linearly with wind speed in long-fetch conditions for wind speeds up to 25 m s−1.
    Description: This work was funded by the National Science Foundation Grant OCE04-24536 as part of the CLIVAR Mode Water Dynamics Experiment (CLIMODE) and the Office of Naval Research Grant N00014-05-1-0139 as part of the CBLAST-LOW program.
    Description: 2014-02-01
    Keywords: Wind shear ; Wind stress ; Atmosphere-ocean interaction ; Fluxes ; Momentum ; Algorithms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...