ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-23
    Description: The magnetic flux content of the Jovian magnetosphere is set by the internal dynamo, but those magnetic field lines are constantly being loaded by heavy ions at the orbit of lo and dragged inexorably outward by the centrifugal force. Vasyliunas has proposed a steady state reconnecting magnetospheric model that sheds plasma islands of zero net magnetic flux and returns nearly empty flux tubes to the inner magnetosphere. The Galileo observations indicate that beyond 40 Rj the current sheet begins to tear and beyond 50 Rj on the nightside explosively reconnects as the tearing site reaches the low density lobe region above and below the current sheet. Small events occur irregularly but on average about every 4 hours and large events about once a day. The magnetic flux reconnected in such events amounts up to about 70,000 Webers/sec and is sufficient to return the outwardly convected magnetic flux to the inner magnetosphere. Since this process releases plasmoids into the jovian tail, as do terrestrial substorms; since this process involves explosive reconnection across the current sheet on the nightside of the planet, as do terrestrial substorms; and since the process is a key in closing the circulation pattern of the magnetic and plasma flux, as it is in terrestrial substorms; we refer to these events as jovian substorms.
    Keywords: Astronomy
    Type: Advanced Space Research (ISSN 0273-1177); Volume 26; No. 10; 1499-1504
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The Dawn spacecraft has been in orbit around the asteroid Vesta since July, 2011. The on-board Framing Camera has acquired thousands of high-resolution images of the regolith-covered surface through one clear and seven narrow-band filters in the visible and near-IR wavelength range. It has observed bright and dark materials that have a range of reflectance that is unusually wide for an asteroid. Material brighter than average is predominantly found on crater walls, and in ejecta surrounding caters in the southern hemisphere. Most likely, the brightest material identified on the Vesta surface so far is located on the inside of a crater at 64.27deg S, 1.54deg . The apparent brightness of a regolith is influenced by factors such as particle size, mineralogical composition, and viewing geometry. As such, the presence of bright material can indicate differences in lithology and/or degree of space weathering. We retrieve the spectral and photometric properties of various bright terrains from false-color images acquired in the High Altitude Mapping Orbit (HAMO). We find that most bright material has a deeper 1-m pyroxene band than average. However, the aforementioned brightest material appears to have a 1-m band that is actually less deep, a result that awaits confirmation by the on-board VIR spectrometer. This site may harbor a class of material unique for Vesta. We discuss the implications of our spectral findings for the origin of bright materials.
    Keywords: Astronomy
    Type: JSC-CN-25735 , European Geosciences Union General Assembly 2012; Apr 22, 2012 - Apr 27, 2012; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.
    Keywords: Astronomy
    Type: JSC-CN-25373 , Fall 2011 Meeting ofthe American Geophysical Union; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Upon approach to asteroid 4 Vesta, the Dawn mission included a dedicated satellite search observation of the operational sphere of the spacecraft around Vesta. Discovery of moons of Vesta would constrain theories of satellite f()rmation. The sequence using the framing camera and clear filter includes three mosaics of six stations acquired on July 9-10. 2011. Each station consists of four sets with three different exposures, 1.5,20 and 270 s. We also processed and scanned the optical navigation sequences until Vesta filled the field of view. Analysis of images involves looking for moving objects in the mosaics and identifying catalogued stars, subtracting them from the image and examining residual objects for evidence of bodies in orbit around Vesta. Celestial coordinates were determined using Astrometry.net, an astrometry calibration service (http://astrometry.net/use.html). We processed the images by subtracting dark and bias fields and dividing by a Hatfield. Images were further filtered subtracting a box car filter (9x9 average) to remove effects of scattered light from Vesta itself. Images were scanned by eye for evidence of motion in directions different from the background stars. All objects were compared with Hubble Space Telescope's Guide Star Catalogue and US Naval Observatory's UCAC3 catalog. We report findings from these observations and analysis, including limits of magnitude, size and motion of objects in orbit around Vesta. We gratefully acknowledge modifications made to Astrometrica http://www.astrometrica.at/ for purposes of this effort.
    Keywords: Astronomy
    Type: GSFC.ABS.5069.2011 , AGU Fall Meeting 2011; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: We present the main results obtained comparing the visible-near infrared (VIS-NIR) spectra Vesta s surface with howardites, eucrites, diogenites (HED). HEDs are commonly associated with Vesta s composition based on spectral similarities. Because of such association, much effort is being made to merge the information from HEDs as well as Vestoids - with that from Vesta to characterize the lithologic diversity of the surface of this asteroid and to infer clues regarding its thermal history. However, while the HEDs are a class of meteorites well studied in the laboratory, the only spectral data available for Vesta until now were telescopic observations which are limited in terms of observation conditions, spatial resolution and Signal to Noise Ratio. The Dawn spacecraft, orbiting around Vesta since July 2011, is performing detailed observations of this body and thus improving our knowledge of its properties. Dawn s scientific payload includes an imaging spectrometer, VIR-MS, sensitive to the VIS-NIR spectral range. VIR-MS began acquiring spectra during the approach phase started in May 2011 and will continue its observations through July 2012 when the spacecraft will depart Vesta to travel to Ceres. The VIR-MS spatial resolution depends upon the mission phase (approach, survey, high altitude, low altitude). However, spectra acquired by VIR-MS have already exceeded the spatial resolution of ground-based telescopic observations, with resolution in the approach phase ranging from 2.5 up to 0.8 km/pixel. Moreover, the observations are uniformly distributed in latitude and longitude allowing us to have a global view of Vesta s crust spectral properties. Using the information provided by VIR spectra, we studied the distribution of the spectral heterogeneities on the surface and we used our findings to perform a comparison with HEDs spectra in the VIS-NIR spectral range searching for analogies and/or incompatibilities. In our analysis, we focused on a method to compare the results obtained at microscopic scale on HEDs samples and the one obtained at macroscopic scale on the surface of Vesta. Finally, we discuss our results in the context of vestan thermal history. The intent of this study is to improve our understanding of the connection between Vesta and the HED samples, which is one of the primary Dawn scientific objectives. This work is supported by an Italian Space Agency (ASI) grant and by NASA through the Dawn project and a Dawn at Vesta Participating Scientist grant.
    Keywords: Astronomy
    Type: JSC-CN-25372 , Fall 2011 Meeting of the American Geophysical Union; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-26
    Description: The Dawn spacecraft started orbiting the second largest asteroid (4) Vesta in August 2011, revealing the details of its surface at an unprecedented pixel scale as small as approx.70 m in Framing Camera (FC) clear and color filter images and approx.180 m in the Visible and Infrared Spectrometer (VIR) data in its first two science orbits, the Survey Orbit and the High Altitude Mapping Orbit (HAMO) [1]. The surface of Vesta displays the greatest diversity in terms of geology and mineralogy of all asteroids studied in detail [2, 3]. While the albedo of Vesta of approx.0.38 in the visible wavelengths [4, 5] is one of the highest among all asteroids, the surface of Vesta shows the largest variation of albedos found on a single asteroid, with geometric albedos ranging at least from approx.0.10 to approx.0.67 in HAMO images [5]. There are many distinctively bright and dark areas observed on Vesta, associated with various geological features and showing remarkably different forms. Here we report our initial attempt to understand the origin of the areas that are distinctively brighter than their surroundings. The dark materials on Vesta clearly are different in origin from bright materials and are reported in a companion paper [6].
    Keywords: Astronomy
    Type: JSC-CN-25701 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of ~70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5].
    Keywords: Astronomy
    Type: JSC-CN-25715 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A strong case can be made that Vesta is the parent asteroid of the howardite, eucrite and diogenite (HED) meteorites [1]. As such, we have over a century of detailed sample analysis experience to call upon when formulating hypotheses regarding plausible lithologic diversity on Vesta. It thus came as a surprise when Dawn s Framing Camera (FC) first revealed distinctly localized materials of exceptionally low and high albedos, often closely associated. To understand the nature and origin of these materials, and how they inform us of the geological evolution of Vesta, task forces began their study. An initial step of the scientific endeavor is to develop a descriptive, non-genetic classification of objects to use as a basis for developing hypotheses and observational campaigns. Here we present a catalog of the types of light-toned deposits and their distribution across Vesta. A companion abstract [2] discusses possible origins of bright materials and the constraints they suggest for vestan geology.
    Keywords: Astronomy
    Type: JSC-CN-25711 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.
    Keywords: Astronomy
    Type: JSC-CN-25899 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Ceres, a dwarf planet located in the main asteroid belt, has a low bulk density, and models predict that a substantial amount of water ice is present in its mantle and outer shell. The Herschel telescope and the Dawn spacecraft have observed the release of water vapor from Ceres, and exposed water ice has been detected by Dawn on its surface at mid-latitudes. Water molecules from endogenic and exogenic sources can also be cold-trapped in permanent shadows at high latitudes, as happens on the Moon and Mercury. Here we present the first image-based survey of Ceres's northern permanent shadows and report the discovery of bright deposits in cold traps. We identify a minimum of 634 permanently shadowed craters. Bright deposits are detected on the floors of just 10 of these craters in multiscattered light. We spectroscopically identify one of the bright deposits as water ice. This detection strengthens the evidence that permanently shadowed areas have preserved water ice on airless planetary bodies.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN38267 , Nature Astronomy Letters (e-ISSN 2397-3366); 1; 7; 1-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...