ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: UV spectra of lambda Velorum taken with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope are used to probe the structure of the outer atmospheric layers and wind and to estimate the mass-loss rate from this K5 lb-II supergiant. VLA radio observations at lambda = 3.6 cm are used to obtain an independent check on the wind velocity and mass-loss rate inferred from the UV observations, Parameters of the chromospheric structure are estimated from measurements of UV line widths, positions, and fluxes and from the UV continuum flux distribution. The ratios of optically thin C II] emission lines indicate a mean chromospheric electron density of log N(sub e) approximately equal 8.9 +/- 0.2 /cc. The profiles of these lines indicate a chromospheric turbulence (v(sub 0) approximately equal 25-36 km/s), which greatly exceeds that seen in either the photosphere or wind. The centroids of optically thin emission lines of Fe II and of the emission wings of self-reversed Fe II lines indicate that they are formed in plasma approximately at rest with respect to the photosphere of the star. This suggests that the acceleration of the wind occurs above the chromospheric regions in which these emission line photons are created. The UV continuum detected by the GHRS clearly traces the mean flux-formation temperature as it increases with height in the chromosphere from a well-defined temperature minimum of 3200 K up to about 4600 K. Emission seen in lines of C III] and Si III] provides evidence of material at higher than chromospheric temperatures in the outer atmosphere of this noncoronal star. The photon-scattering wind produces self-reversals in the strong chromospheric emission lines, which allow us to probe the velocity field of the wind. The velocities to which these self-absorptions extend increase with intrinsic line strength, and thus height in the wind, and therefore directly map the wind acceleration. The width and shape of these self-absorptions reflect a wind turbulence of approximately equal 9-21 km/s. We further characterize the wind by comparing the observations with synthetic profiles generated with the Lamers et al. Sobolev with Exact Integration (SEI) radiative transfer code, assuming simple models of the outer atmospheric structure. These comparisons indicate that the wind in 1994 can be described by a model with a wind acceleration parameter beta approximately 0.9, a terminal velocity of 29-33 km/s, and a mass-loss rate approximately 3 x 10(exp -9) solar M/yr. Modeling of the 3.6 cm radio flux observed in 1997 suggests a more slowly accelerating wind (higher beta) and/or a higher mass-loss rate than inferred from the UV line profiles. These differences may be due to temporal variations in the wind or from limitations in one or both of the models. The discrepancy is currently under investigation.
    Keywords: Astronomy
    Type: Astrophysical Journal; 521; 382-406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-15
    Description: Goddard High Resolution Spectrograph (GHRS) observations of the RS CVn-type binary V711 Tau (Kl IV+G5 IV) were obtained at several phases over two consecutive stellar orbital cycles in order to study ultraviolet emission-line profile and flux variability. Spectra cover the Mg II h and k lines, C IV doublet, and Si IV region, as well as the density-sensitive lines of C III] (1909 A) and Si III] (1892 A). IUE spectra, Extreme Ultra Violet (EUV) data, and Ultraviolet, Blue, Visual (UBV) photometry were obtained contemporaneously with the GHRS data. Variable extended wings were detected in the Mg II lines. We discuss the Mg II line profile variability using various Gaussian emission profile models. No rotational modulation of the line profiles was observed, but there were several large flares. These flares produced enhanced emission in the extended line wings, radial velocity shifts, and asymmetries in some line profiles. Nearly continuous flaring for more than 24 hr, as indicated in the IUE data, represents the most energetic and long-lived chromospheric and transition region flare ever observed with a total energy much greater than 5 x 10(exp 35) ergs. The C III] to Si III] line ratio is used to estimate the plasma density during the flares.
    Keywords: Astronomy
    Type: NASA-CR-204570 , NAS 1.26-204570 , The Astrophysical Journal; 470; 2; 1172-1186
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This grant supported the observing and data analysis for FUSE Cycle 4 project DO47 to observe five late-A and F supergiants using a total observing allocation of 150 ksec. Stellar activity on A and F supergiants has been poorly studied in the past; primarily because the photospheric continuum dominates any chromospheric (~ 10 4 K) or transition region (TR; ~ 10 5 K) emission lines far into the ultraviolet. FUSE observations of A and F supergiants offer one of the best methods to study stellar activity on these stars, because many activity indicators longward of 1200 A are swamped by the photospheric continuum emission. We used FUSE FUV spectra to search for 0 VI and C I11 TR emission lines and obtained data for t Car (A8 Ib, for 60.5 ksec, on 2003 Apr 27), 8 Sco (F1 11, 22.7 ksec, 2003 Aug 2), ct Per (F5 Ib, 30.8 ksec, 2003 Oct l), a UMi (F7 Ib-11, 23.9 ksec, 2003 Oct 14), and y Cyg (F8 Ib, 25.8 ksec, 2003 Oct 18). These observations used the large LWRS aperture and collected data in time-tagged mode. The LWRS aperture is large enough that the target should remain within the aperture with the normal level of FUSE pointing jitter and target drift. We examined the stellar signal and found that the targets were well within the aperture throughout the observation. The data were split into night-time and day-time data so that the effects of airglow emission were recognizable, and combined day and night spectra were generated using CALFUSE 2.4.0 .
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...