ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-17
    Beschreibung: The Magnetospheric Imaging Constellation (MagIC) is a NASA space science concept to study the Earth's Magnetosphere. The concept proposes to apply tomography techniques using an array of spacecraft to obtain three dimensional images of the Earth's magnetosphere. This paper presents an optimal orbit design to ensure that the constellation is in the desired region of the magnetosphere for maximum time. The solution is found using a steepest descent optimization algorithm that takes into account perturbations from the non-spherical Earth, drag, Sun, Moon and other significant bodies. The solution also satisfies constraints on maximum eclipse duration and geometry constraints to allow an adequate GPS navigation solution. We present three solutions depending upon the epoch of the primary science: vernal equinox, summer solstice, and a third midway between the vernal equinox and summer solstice. Orbit insertion is also considered. All spacecraft are assumed to be launched on a single vehicle into a nominal orbit and the (Delta)V's to achieve the nominal orbit are presented. After insertion into the nominal orbit, each spacecraft undergoes a phasing maneuver to place it in the appropriate position with respect to the rest of the constellation. We present a minimum fuel approach to maneuver each spacecraft from the nominal orbit into the desired final orbit.
    Schlagwort(e): Astrodynamics
    Materialart: 16th International Symposium on Space Flight Dynamics; Pasadena, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: This document is presentation in viewgraph form, which outlines the methods of determining spacecraft attitude. The presentation reviews several parameterizations relating to spacecraft attitude, such as Euler's Theorem, Rodriques parameters, and Euler-Rodriques parameters or Quaternion. Onboard attitude determination is the norm, using either single frame or filtering methods. The presentation reviews several mathematical representations of attitude. The mechanisms for determining attitude on board the Hubble Space Telescope, the Tropical Rainfall and Measuring Mission and the Solar Anomalous and Magnetospheric Particle Explorer are reviewed. Wahba's problem, Procrustes Problem, and some solutions are also summarized.
    Schlagwort(e): Astrodynamics
    Materialart: Nov 07, 2000; Ithaca, NY; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: Over the past four years, NASA's Goddard Space Flight Center has built and tested the Triana observatory, which will be the first Earth observing science satellite to take advantage of the unique perspective offered by a Lissajous orbit about the first Earth-Sun Lagrange Point (L1). Triana was originally meant to fly on the U.S. Space Transportation System (a.k.a. the Space Shuttle), but complications with the shuttle manifest have forced Triana into a "wait and see" attitude. The observatory is currently being stored at NASA's Goddard Space Flight Center, where it waits for an appropriate launch opportunity to materialize. To that end, several possible alternatives have been considered, including variations on the nominal shuttle deployment scenario, a high inclination Delta-type launch from Vandenberg Air Force Base, a Tsyklon class vehicle launched from Baikonur, Kazakhstan, and a ride on a French Ariane vehicle out of French Guiana into a somewhat arbitrary geostationary transfer orbit (GTO). This paper chronicles and outlines the pros and cons of how each of these opportunities could be used to send Triana on its way to L1.
    Schlagwort(e): Astrodynamics
    Materialart: International Conference on Libration Point Orbits and Applications; Jun 10, 2002 - Jun 14, 2002; Gerona; Spain
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-13
    Beschreibung: This paper summarizes the results of processing GPS data from the AMSAT Phase 3D (AP3) satellite for real-time navigation and post-processed orbit determination experiments. AP3 was launched into a geostationary transfer orbit (GTO) on November 16, 2000 from Kourou, French Guiana, and then was maneuvered into its HEO over the next several months. It carries two Trimble TANS Vector GPS receivers for signal reception at apogee and at perigee. Its spin stabilization mode currently makes it favorable to track GPS satellites from the backside of the constellation while at perigee, and to track GPS satellites from below while at perigee. To date, the experiment has demonstrated that it is feasible to use GPS for navigation and orbit determination in HEO, which will be of great benefit to planned and proposed missions that will utilize such orbits for science observations. It has also shown that there are many important operational considerations to take into account. For example, GPS signals can be tracked above the constellation at altitudes as high as 58000 km, but sufficient amplification of those weak signals is needed. Moreover, GPS receivers can track up to 4 GPS satellites at perigee while moving as fast as 9.8 km/sec, but unless the receiver can maintain lock on the signals long enough, point solutions will be difficult to generate. The spin stabilization of AP3, for example, appears to cause signal levels to fluctuate as other antennas on the satellite block the signals. As a result, its TANS Vectors have been unable to lock on to the GPS signals long enough to down load the broadcast ephemeris and then generate position and velocity solutions. AP3 is currently in its eclipse season, and thus most of the spacecraft subsystems have been powered off. In Spring 2002, they will again be powered up and AP3 will be placed into a three-axis stabilization mode. This will significantly enhance the likelihood that point solutions can be generated, and perhaps more important, that the receiver clock can be synchronized to GPS time. This is extremely important for real-time and post-processed orbit determination, where removal of receiver clock bias from the data time tags is needed, for time-tagging of science observations. Current analysis suggests that the inability to generate point solutions has allowed the TANS Vector clock bias to drift freely, being perhaps as large as 5-7 seconds by October, 2001, thus causing up to 50 km of along-track orbit error. The data collected in May, 2002 while in three-axis stabilized mode should provide a significant improvement in the orbit determination results.
    Schlagwort(e): Astrodynamics
    Materialart: AIAA GN&C Conference; Aug 05, 2002 - Aug 08, 2002; Monterey, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-13
    Beschreibung: The filter/smoother combination provides the most accurate means of trajectory reconstruction. Not all parameters of interest can be determined from a given flight test data set: need to check observability. A variety of ground & onboard sensors may be used; trend appears to be toward increasing reliance on onboard GPS.
    Schlagwort(e): Astrodynamics
    Materialart: AIAA Aerodynamic Decelerator Systems Conference; May 21, 2001; Unknown
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-13
    Beschreibung: Regarding multiple spacecraft formation flying, the observation has been made that control thrust need only be applied coplanar to the local horizon to achieve complete controllability of a two-satellite (leader-follower) formation. A formulation of orbital dynamics using the state of one satellite relative to another is used. Without the need for thrust along the radial (zenith-nadir) axis of the relative reference frame ' propulsion system simplifications and weight reduction may be accomplished. Several linear-quadratic regulators (LQR) are explored and compared based on performance measures likely to be important to many missions, but not directly optimized in the LQR designs. Maneuver simulations are performed using commercial ODE solvers to propagate the Keplerian dynamics of a controlled satellite relative to an uncontrolled leader. These short maneuver simulations demonstrate the capacity of the controller to perform changes from one formation geometry to another. This work focusses on formations in which the controlled satellite has a relative trajectory which projects onto the local horizon of the uncontrolled satellite as a circle. This formation has potential uses for distributed remote sensing systems.
    Schlagwort(e): Astrodynamics
    Materialart: AIAA Paper 6504 , AIAA Guidance, Navigation and Control Conference; Aug 06, 2001 - Aug 09, 2001; Montreal, Quebec; Canada
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-13
    Beschreibung: The Microwave Anisotropy, Probe (MAP) is a Medium Class Explorers (MIDEX) Mission produced in partnership between Goddard Space Flight Center (GSFC) and Princeton University. The goal of the MAP mission is to produce an accurate fill-sky, map of the cosmic microwave background temperature fluctuations (anisotropy). The mission orbit is a Lissajous orbit about the L(sub 2) Sun-Earth Lagrange point. The trajectory design for MAP is complex, having many requirements that must be met including shadow avoidance, sun angle constraints, Lissqjous size and shape characteristics, and limited Delta-V budget. In order to find a trajectory that met the design requirements for the entire 4-year mission lifetime goal, GSFC Flight Dynamics engineers performed many analyses, the results of which are presented herein. The paper discusses the preliminary trade-offs to establish a baseline trajectory, analysis to establish the nominal daily trajectory, and the launch window determination to widen the opportunity from instantaneous to several minutes for each launch date.
    Schlagwort(e): Astrodynamics
    Materialart: 16th International Symposium on Space Flight Dynamics; Dec 03, 2001 - Dec 07, 2001; Pasadena, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-13
    Beschreibung: The autonomous formation flying control algorithm developed by the Goddard Space Flight Center (GSFC) for the New Millennium Program (NMP) Earth Observing-1 (EO-1) mission is investigated for applicability to libration point orbit formations. In the EO-1 formation-flying algorithm, control is accomplished via linearization about a reference transfer orbit with a state transition matrix (STM) computed from state inputs. The effect of libration point orbit dynamics on this algorithm architecture is explored via computation of STMs using the flight proven code, a monodromy matrix developed from a N-body model of a libration orbit, and a standard STM developed from the gravitational and coriolis effects as measured at the libration point. A comparison of formation flying Delta-Vs calculated from these methods is made to a standard linear quadratic regulator (LQR) method. The universal 3-D approach is optimal in the sense that it can be accommodated as an open-loop or closed-loop control using only state information.
    Schlagwort(e): Astrodynamics
    Materialart: AIAA Flight Dynamics Specialist Conference; Jul 30, 2001 - Aug 02, 2001; Unknown
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-07-13
    Beschreibung: The Origins' Next Generation Space Telescope (NGST) trajectory design is addressed in light of improved methods for attaining constrained orbit parameters and their control at the exterior collinear libration point, L2. The use of a dynamical systems approach, state-space equations for initial libration orbit control, and optimization to achieve constrained orbit parameters are emphasized. The NGST trajectory design encompasses a direct transfer and orbit maintenance under a constant acceleration. A dynamical systems approach can be used to provide a biased orbit and stationkeeping maintenance method that incorporates the constraint of a single axis correction scheme.
    Schlagwort(e): Astrodynamics
    Materialart: AAS-01-206 , Space Flight Mechanics; Feb 11, 2001 - Feb 14, 2001; Santa Barbara, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...