ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-09
    Description: Mixed‐mode fluid‐filled cracks represent a common means of fluid transport within the Earth's crust. They often show complex propagation paths which may be due to interaction with crustal heterogeneities or heterogeneous crustal stress. Previous experimental and numerical studies focus on the interplay between fluid over-pressure and external stress but neglect the effect of other crack parameters. In this study, we address the role of crack length on the propagation paths in the presence of an external heterogeneous stress field. We make use of numerical simulations of magmatic dike and hydrofracture propagation, carried out using a two‐dimensional boundary element model, and analogue experiments of air‐filled crack propagation into a transparent gelatin block. We use a 3‐D finite element model to compute the stress field acting within the gelatin block and perform a quantitative comparison between 2‐D numerical simulations and experiments. We show that, given the same ratio between external stress and fluid pressure, longer fluid‐filled cracks are less sensitive to the background stress, and we quantify this effect on fluid‐filled crack paths. Combining the magnitude of the external stress, the fluid pressure, and the crack length, we define a new parameter, which characterizes two end member scenarios for the propagation path of a fluid‐filled fracture. Our results have important implications for volcanological studies which aim to address the problem of complex trajectories of magmatic dikes (i.e., to forecast scenarios of new vents opening at volcanoes) but also have implications for studies that address the growth and propagation of natural and induced hydrofractures.
    Description: Published
    Description: 2064–2081
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Magmatic dykes ; hydrofractures ; Numerical symulations ; Analogue experiments ; 04.08. Volcanology ; 05.05. Mathematical geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-06
    Description: Magmatic dykes interact with heterogeneous crustal stress. As a result, their propagation towards the surface can be tortuous and their propagation velocity may vary. While the deflection of dykes in response to the local stress field has been addressed by several studies, less has been done about the effect on their propagation velocity. Understanding under which conditions an intrusion may accelerate or decelerate due to crustal stress heterogeneities has obvious important implications in terms of forecasting the timing of the onset of the eruption. Here we analyse the velocity of fluid-filled crack propagation in a gelatin block characterized by a heterogenous stress field considering the case study of a load applied at the surface. We find that a crack deflected towards the load and its underlying compressive stress field is decelerated. By comparing experimental results with numerical solutions, we evidence the potential complementary role played by stress field variations and changes in trajectory orientation, controling the buoyancy, on the velocity of magma propagation. We also show that the energy release estimated along the crack path by simplified numerical models appears to be a good proxy for the velocity. We conclude that numerical models allowing for magma path estimations could also be used to infer magma velocity variations. In addition, 1D numerical models solving for the fluid flow along a prescribed path, provide velocity variation as a function of the surrounding stress field and the magma driving pressure.
    Description: Published
    Description: 838318
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: magma propagation, analog experiments, numerical modelling, volcanic hazard, hydraulic fracture ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...