ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: This paper presents an interpretation of crustal seismic refraction data from the northern sector of the Southern Apennines thrust belt, a region that in historical times experienced large destructive earthquakes. The data were acquired in 1992 along a seismic line 75 km long and parallel to the Apenninic chain, in order to determine a detailed 2-D P-wave velocity model of the upper crust in an area that had not been deeply investigated by geophysical methods previously. We have used a 2-D ray tracing technique based on asymptotic ray theory to model travel times of first and reflected P-wave arrivals. Synthetic seismograms have been produced by finite difference simulations in order to check the reliability of the velocity model inferred by ray-tracing modelling. The interpretation of the velocity model is constrained by stratigraphic and sonic velocity logs from wells for oil exploration located close to the seismic line. Gravity data modelling allows to check the velocity model and to extend the structural interpretation in 3-D. In the shallow crust, up to a depth of 3–4 km, strong lateral variations of the modelled velocities are produced by the overlapping of thrust sheets formed by: (1) Cenozoic flyschoid cover and basinal successions that underlie the seismic profile with P-wave velocities in the 2.8–4.1 km/s range and thicknesses varying between 0.5 and 4.5 km; (2) Mesozoic basinal sequences with a velocity of 4.8 km/s and a depth of 1.5–2.1 km in the northern part of the profile; (3) Mesozoic limestones of the Western Carbonate Platform with a velocity of 6.0 km/s and a depth of 0.1–0.8 km in the southern part of the profile. At a greater depth, the model becomes more homogeneous. A continuous seismic interface 3.0–4.5 km deep with a velocity of 6.0 km/s is interpreted as the top of the Meso-Cenozoic Carbonate Multilayer of the Apulia Platform, characterized by an increase in seismic velocity from 6.2 to 6.6 km/s at depths of 6–7 km. A lower P-wave velocity (about 5.0 km/s) is hypothesized at depths ranging between 9.5 and 11 km. As inferred by commercial seismic lines and data from two deep wells located in the Apulia foreland and Bradano foredeep, this low-velocity layer can be related to Permo-Triassic clastic deposits drilled at the bottom of the Apulia Platform. Seismic data do not allow us to identify possible deeper seismic interfaces that could correspond to the top of the Paleozoic crystalline basement; this is probably due to the low-velocity layer at the bottom of the Carbonate Multilayer that reflects and attenuates a great part of the seismic energy. The joint interpretation of seismic refraction and well data, in accordance with gravity data, provides the first detailed P-wave velocity model of the upper crust of the northern sector of the Southern Apennines, which differs considerably from previous 1-D velocity models used to study the seismicity of the region, and reveals new information about the structure of the thrust belt
    Description: Published
    Description: 273-297
    Description: reserved
    Keywords: crustal structure; Italy; seismic refraction; Southern Apennines ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1677242 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A dense wide-angle data set is used to test a two-step procedure for the separate inversion of first-arrival and reflection traveltimes. Data were collected in a complex thrust belt environment (southern Italy) along a 14 km line, with closely spaced sources (60 m) and receivers (90 m). A fully non-linear tomographic technique, that is specially designed to image complex structures, is applied to over 6400 first-arrival traveltimes in order to determine a detailed velocity model. A bi-cubic spline velocity model parameterization is used. The inversion strategy follows a multiscale approach and employs a non-linear velocity optimization scheme. The tomographic velocity model is adopted as the background reference medium for a subsequent interface inversion, which is aimed at imaging a target upper-crust reflector. The interface inversion method is also based on a multiscale approach and uses a non-linear technique for model parameters (interface position nodes) optimization. It is applied to over 1600 reflection traveltimes of a target event picked both in the near- and in the wide-angle offset range. The retrieved interface is well resolved in central part of the model, where ray coverage mainly includes clear post-critical reflections and the background velocity model is accurate in depth thanks to large offset deep turning rays. The determined velocity and interface models are consistent with VSP data and correlate well with the geometry of known geologic structures. This study shows that the used inversion approach is efficient for target-orientated investigations in complex geologic environments
    Description: Published
    Description: 264-278
    Description: reserved
    Keywords: dense wide-angle data, transmission tomography, interface inversion, non-linear inversion, complex geologic environment ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3228587 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-24
    Description: In this study, we address the issue of short-term to medium-term probabilistic seismic hazard analysis for two volcanic areas, Campi Flegrei caldera and Mt. Vesuvius in the Campania region of southern Italy. Two different phases of the volcanic activity are considered. The first, which we term the pre-crisis phase, concerns the present quiescent state of the volcanoes that is characterized by low-to-moderate seismicity. The second phase, syn-crisis, concerns the unrest phase that can potentially lead to eruption. For the Campi Flegrei case study, we analyzed the pattern of seismicity during the 1982–1984 ground uplift episode (bradyseism). For Mt. Vesuvius, two different timeevolutionary models for seismicity were adopted, corresponding to different ways in which the volcano might erupt. We performed a site-specific analysis, linked with the hazard map, to investigate the effects of input parameters, in terms of source geometry, mean activity rate, periods of data collection, and return periods, for the syn-crisis phase. The analysis in the present study of the pre-crisis phase allowed a comparison of the results of probabilistic seismic hazard analysis for the two study areas with those provided in the Italian national hazard map. For the Mt. Vesuvius area in particular, the results show that the hazard can be greater than that reported in the national hazard map when information at a local scale is used. For the syn-crisis phase, the main result is that the data recorded during the early months of the unrest phase are substantially representative of the seismic hazard during the whole duration of the crisis.
    Description: Published
    Description: 767–783
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic hazard ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...