ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-31
    Description: On September 16, 2015, the M W =8.2 Illapel megathrust earthquake ruptured the Central Chilean margin. Combining inversions of displacement measurements and seismic waveforms with high frequency (HF) teleseismic backprojection we derive a comprehensive description of the rupture, which also predicts deep-ocean tsunami waveheights. We further determine moment tensors and obtain accurate depth estimates for the aftershock sequence. The earthquake nucleated near the coast but then propagated to the north and updip, attaining a peak slip of 5–6 m. In contrast, HF seismic radiation is mostly emitted downdip of the region of intense slip, and arrests earlier than the long period rupture, indicating smooth slip along the shallow plate interface in the final phase. A superficially similar earthquake in 1943 with a similar aftershock zone had a much shorter source time function, which matches the duration of HF seismic radiation in the recent event, indicating that the 1943 event lacked the shallow slip.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-30
    Description: This work investigates the role of crystallization layers’ periodicity and thickness on functional response in chemical solution-deposited lead zirconate titanate thin films, with periodic, alternating Zr and Ti gradients normal to the surface of the film. The films were processed with a range of layer periodicities and similar total film thickness, in order to relate the number of layers and compositional oscillations to structural and functional response changes. Trends of increased extrinsic contributions to the dielectric and ferroelectric responses are observed with increasing layer periodicity, but are counterpointed by simultaneous reduction of intrinsic contributions to the same. Transmission electron microscopy reveals in-plane crystallographic discontinuity at individual crystallization interfaces. Samples with smaller periodicity, and thus thinner layers, potentially suffer from grain size refinement and subsequent reduction in domain size, thereby limiting extrinsic contributions to the response. The strong compositional oscillations in samples with larger periodicity result in deep fluctuations to the tetragonal side of the phase diagram, potentially reducing intrinsic contributions to the response. Conversely, piezoresponse force microscopy results suggest that large chemical oscillations in samples with larger periodicity also result in closer proximity to the morphotropic phase boundary, as evidenced by local acoustic softening at switching, signaling potential field-induced phase transitions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-30
    Description: The impact of higher-order ionospheric effects on the estimated station coordinates and clocks in Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is well documented in literature. Simulation studies reveal that higher-order ionospheric effects have a significant impact on the estimated tropospheric parameters as well. In particular, the tropospheric north-gradient component is most affected for low- and mid-latitude stations around noon. In a practical example we select a few hundred stations randomly distributed over the globe, in March 2012 (medium solar activity) and apply/do not apply ionospheric corrections in PPP. We compare the two sets of tropospheric parameters (ionospheric corrections applied/not applied) and find an overall good agreement with the prediction from the simulation study. The comparison of the tropospheric parameters with the tropospheric parameters derived from the ERA-Interim global atmospheric reanalysis shows that ionospheric corrections must be consistently applied in PPP and the orbit and clock generation. The inconsistent application results in an artificial station dis-placement which is accompanied by an artificial 'tilting' of the troposphere. This finding is relevant in particular for those who consider advanced GNSS tropospheric products for meteorological studies.
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...