ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-05
    Description: The dielectric, magnetic, and magnetodielectric properties of Ca 2 Fe A O 5+δ ( A  = Al, Ga) ceramics were investigated together with their crystal structures. Rietveld refinement of the X-ray diffraction data indicated that the space group of the Ca 2 FeAlO 5+δ ceramic was Ibm 2, whereas that of the Ca 2 FeGaO 5+δ ceramic was Pcmn . Dielectric relaxation above room temperature, originating from the Maxwell–Wagner effect and polaronic hole hopping between Fe 3+ and Fe 4+ ions, was observed in both ceramics. Weak ferrimagnetic behavior was identified from the magnetic-field-dependent magnetization in these ceramics, which was attributed to the non-cancelled spins of the antiferromagnetic-ordered Fe 3+ and Fe 4+ ions. An intrinsic, giant, room-temperature magnetodielectric coefficient of up to −23.3% was achieved in the Ca 2 FeAlO 5+δ ceramic at 50 MHz, which was attributed to the suppression of charge fluctuations of Fe 3+ and Fe 4+ ions in the magnetic field.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-18
    Description: [1]  Kinetic Alfvén waves (KAWs) can play an important role in the energization of plasma particles and the formation of filamentous structures, which commonly are encountered and frequently accompanied by field-aligned currents in various magneto-plasmas, such as laboratory, auroral, and coronal plasmas. Based on a low-frequency kinetic dispersion equation in frequency ω  〈  ω ci (the ion cyclotron frequency), KAW instability driven by a field-aligned current, which is carried by the field-aligned drift of electrons at velocity V D , is investigated in a low- β plasma of β  〈  Q  ≪ 1, where β is the kinetic-to-magnetic pressure ratio and Q (≡ m e / m i  ≪ 1) is the mass ratio of electrons to ions. An instability condition and the corresponding growth rate are obtained, which depends on the plasma β parameter as well as the drift velocity V D . The results show that the KAW instability occurs in the perpendicular wave-number range of , in which the growth rate reaches its maximum at for fixted V D and β . As V D increases, this growing wave-number range widens and the growth rate increases, but the maximal-growing wavenumber decreases. On the other hand, as the plasma β parameter decreases, the growing wave-number range also widens, and the maximal-growing wavenumber and growth rate both increase. These results have potential importance in understanding the physics of the electric current dissipation and plasma active phenomena since the field-aligned current is one of the most active factors in space and astrophysical plasmas.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-17
    Description: Sensitive long-wavelength radar observations of absolute velocity never previously published from Jicamarca are brought to bear on the long-standing problem of radar detection of slow-moving meteors. Attention is devoted to evaluating the ionization coefficient β(V) in the critically important velocity range of 11-20 km/s in recent laboratory measurements of Thomas et al. (2016). Theoretical predictions for β(V) based on the laboratory data, on Jones (1997), on Janches et al. (2014) and on Verniani and Hawkins (1964) are used to correct the incoming meteor velocities measured with the sensitive Jicamarca HPLA radar operating at 6 m wavelength. All corrected distributions are consistent with the predictions of the Nesvorný model in showing pronounced monotonic increases down to the escape velocity (11km/s). Such distributions may be essential to explaining the pronounced ledge in nighttime electron density and the rapid disappearance of electrons in meteor trails in the altitude range of 80-85 km.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-11
    Description: The temperature dependence of the spectral features in the vicinity of the direct band edge of mixed-crystals Mo(S x Se 1-x ) 2 solid solutions is measured in the temperature range of 25–295 K by using piezoreflectance (PzR). The near band-edge excitonic transition energies of Mo(S x Se 1-x ) 2 solid solutions were determined accurately from a detailed line-shape fit of the PzR spectra. The near band-edge excitonic transition energies were found to vary smoothly with the increase of S content x, indicating that the natures of the direct band edges of Mo(S x Se 1-x ) 2 solid solutions are similar. The temperature dependences of near band edge transition energies were analyzed using Bose-Einstein expressions in the temperature range from 25 to 295 K. The parameters that described the temperature variation of the energies and broadening function of the excitonic transitions were evaluated and discussed.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-25
    Description: Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-16
    Description: This paper presents experimental results on the effects of insulating coatings on tungsten planar wire array Z-pinches on an 80 kA, 100 ns current facility. Expansion velocity is obviously increased from ∼0.25 km/s to ∼3.5 km/s by using the insulating coatings. It can be inferred that the wire cores are in gaseous state with this fast expansion velocity. An optical framing camera and laser probing images show that the standard wire arrays have typical ablation process which is similar to their behaviors on mega-ampere facilities. The ablation process and precursor plasma are suppressed for dielectric tungsten wires. The wire array implosion might be improved if these phenomena can be reproduced on Mega-ampere facilities.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-10
    Description: Electron-cyclotron maser (ECM) is one of the most important emission mechanisms in astrophysics and can be excited efficiently by lower-energy cutoffs of power-law electrons. These non-thermal electrons probably propagate as a directed collimated beam along ambient magnetic fields. This paper investigates the ECM, in which the effect of electron beams is emphasized. Results show the dependence of emission properties of the ECM on the beam feature. The maximum growth rate of the extraordinary mode (X2) rapidly decreases as the beam momentum increases, while the growth rate of the ordinary mode (O1) changes slightly. In particular, the ordinary mode can overcome the extraordinary mode and becomes the fastest growth mode once the beam momentum is large enough. This research presents an extension of the conventional studies on ECM driven by lower-energy cutoffs and may be helpful to understand better the emission process of solar type I radio bursts, which are dominated by the ordinary mode emission.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-27
    Description: The ionosphere scale height is one of the most significant ionospheric parameters, which contains information about the ion and electron temperatures and dynamics in upper ionosphere. In this paper, an empirical orthogonal function (EOF) analysis method is applied to process all the ionospheric radio occultations of GPS/COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) from the year 2007 to 2011 to reconstruct a global ionospheric scale height model. This monthly medium model has spatial resolution of 5° in geomagnetic latitude (-87.5° ~ 87.5°), and temporal resolution of 2 hours in local time. EOF analysis preserves the characteristics of scale height quite well in the geomagnetic latitudinal, anural, seasonal and diurnal variations. In comparison with COSMIC measurements of the year of 2012, the reconstructed model indicates a reasonable accuracy. In order to improve the topside model of International Reference Ionosphere (IRI), we attempted to adopt the scale height model in the Bent topside model by applying a scale factor q as an additional constraint. With the factor q functioning in the exponent profile of topside ionosphere, the IRI scale height should be forced equal to the precise COSMIC measurements. In this way, the IRI topside profile can be improved to get closer to the realistic density profiles. Internal quality check of this approach is carried out by comparing COSMIC realistic measurements and IRI with or without correction respectively. In general, the initial IRI model overestimates the topside electron density to some extent, and with the correction introduced by COSMIC scale height model, the deviation of vertical total electron content (VTEC) between them is reduced. Furthermore, independent validation with Global Ionospheric Maps (GIM) VTEC implies a reasonable improvement in the IRI VTEC with the topside model correction.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract Although steady, isotropic Darcy flows are inherently laminar and non‐mixing in the absence of diffusion, it is well understood that transient forcing via engineered pumping schemes can induce rapid, chaotic mixing flows in groundwater. In this study we explore the propensity for such mixing to arise in natural groundwater systems subject to cyclical forcings, e.g. tidal or seasonal influences. Using a conventional linear groundwater flow model subject to tidal forcing, we show that under certain conditions these flows generate Lagrangian transport and mixing phenomena (chaotic advection) near the tidal boundary. We show that aquifer heterogeneity, storativity, and forcing magnitude cause reversals in flow direction over the forcing cycle which, in turn, generate coherent Lagrangian structures and chaos. These features significantly augment fluid mixing and transport, leading to anomalous residence time distributions, flow segregation, and the potential for profoundly altered reaction kinetics. We define the dimensionless parameter groups which govern this phenomenon and explore these groups in connection with a set of well‐characterised tidal systems. The potential for Lagrangian chaos to be present near discharge boundaries must be recognized and assessed in field studies.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-10-13
    Description: Increasing total electron content (TEC) measurements from the low earth orbiting (LEO) satellites to Global Positioning System (GPS) satellites flourish the exploration of the ionosphere and plasmasphere for decades. This paper indicates a method that 3-D Var is applied to assimilate precise orbit determination (POD) antenna TEC measurements of Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites into the background Global Core Plasma Model (GCPM). The slant TEC data archived in the COSMIC Data Analysis and Archive Center (CDAAC) from 500 km to 20,200 km are used to reconstruct a new electron density model. This model has temporal resolution of 2 hours and spatial resolution of 2.5° in geomagnetic latitude, 5° in longitude, 50 km in the upper ionosphere and several hundred kilometers in the plasmasphere. Preliminary results show that the data assimilation modifies the initial GCPM forecast to be better coincident with actual COSMIC measurements in internal quality check. Furthermore, independent validation with upper ionosphere retrieved electron density, and TEC of Global Ionosphere Maps (GIM) implies a reasonable improvement in the estimation of plasmaspheric electron density after the assimilation.
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...