ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-14
    Description: Changes apparent in the arctic climate system in recent years require evaluation in a century-scale perspective in order to assess the Arctic's response to increasing anthropogenic greenhouse-gas forcing. Here, a new set of century- and multidecadal-scale observational data of surface air temperature (SAT) and sea ice is used in combination with ECHAM4 and HadCM3 coupled atmosphere-ice-ocean global model simulations in order to better determine and understand arctic climate variability. We show that two pronounced twentieth-century warming events, both amplified in the Arctic, were linked to sea-ice variability. SAT observations and model simulations indicate that the nature of the arctic warming in the last two decades is distinct from the early twentieth-century warm period. It is suggested strongly that the earlier warming was natural internal climate-system variability, whereas the recent SAT changes are a response to anthropogenic forcing. The area of arctic sea ice is furthermore observed to have decreased similar to8 x 10(5) km(2) (7.4%) in the past quarter century, with record-low summer ice coverage in September 2002. A set of model predictions is used to quantify changes in the ice cover through the twenty-first century, with greater reductions expected in summer than winter. In summer, a predominantly sea-ice-free Arctic is predicted for the end of this century.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-15
    Description: The effect of a warmer climate on the properties of extratropical cyclones is investigated using simulations of the ECHAM5 global climate model at resolutions of T213 (60 km) and T319 (40 km). Two periods representative of the end of the 20th and 21st centuries are investigated using the IPCC A1B scenario. The focus of the paper is on precipitation for the NH summer and winter seasons, however results from vorticity and winds are also presented. Similar number of events are identified at both resolutions. There are, however, a greater number of extreme precipitation events in the higher resolution run. The difference between maximum intensity distributions is shown to be statistically significant using a Kolmogorov–Smirnov test. A generalized Pareto distribution is used to analyse changes in extreme precipitation and wind events. In both resolutions, there is an increase in the number of extreme precipitation events in a warmer climate for all seasons, together with a reduction in return period. This is not associated with any increased vertical velocity, or with any increase in wind intensity in the winter and spring. However, there is an increase in wind extremes in the summer and autumn associated with tropical cyclones migrating into the extratropics
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Taylor & Francis
    In:  Tellus A: Dynamic meteorology and oceanography, 63 (5). pp. 907-920.
    Publication Date: 2016-06-14
    Description: We have examined the atmospheric water cycle of both Polar Regions, polewards of 60°N and 60°S, using the ERA-Interim reanalysis and high-resolution simulations with the ECHAM5 model for both the present and future climate based on the IPCC, A1B scenario. The annual precipitation in ERA-Interim amounts to ∼17000 km3 and is more or less the same in the Arctic and the Antarctic, but it is composed differently. In the Arctic the annual evaporation is ∼8000 km3 but ∼3000 km3 less in the Antarctica where the net horizontal transport is correspondingly larger. The net water transport of the model is more intense than in ERA-Interim, in the Arctic the difference is 2.5% and in the Antarctic it is 6.2%. Precipitation and net horizontal transport in the Arctic has a maximum in August and September. Evaporation peaks in June and July. The seasonal cycle is similar in Antarctica with the highest precipitation in the austral autumn. The largest net transport occurs at the end of the major extra-tropical storm tracks in the Northern Hemisphere such as the eastern Pacific and eastern north Atlantic. The variability of the model is virtually identical to that of the re-analysis and there are no changes in variability between the present climate and the climate at the end of the 21st century when normalized with the higher level of moisture. The changes from year to year are substantial with the 20- and 30-year records being generally too short to identify robust trends in the hydrological cycle. In the A1B climate scenario the strength of the water cycle increases by some 25% in the Arctic and by 19% in the Antarctica, as measured by annual precipitation. The increase in the net horizontal transport is 29% and 22%, respectively, and the increase in evaporation correspondingly less. The net transport follows closely the Clausius–Clapeyron relation. There is a minor change in the annual cycle of the Arctic atmospheric water cycle with the maximum transport and precipitation occurring later in the year. There is a small imbalance of some 4–6% between the net transport and precipitation minus evaporation. We suggest that this is mainly due to the fact that the transport is calculated from instantaneous six hourly data while precipitation and evaporation is accumulated over a 6-h period. The residual difference is proportionally similar for all experiments and hardly varies from year to year.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...