ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We analyse the fluctuations of the electron density and of the magnetic field in the Earth’s magnetosheath to identify the waves observed below the proton gyrofrequency. We consider two quiet magnetosheath crossings i.e. 2 days characterized by small-amplitude waves, for which the solar wind dynamic pressure was low. On 2 August 1978 the spacecraft were in the outer magnetosheath. We compare the properties of the observed narrow-band waves with those of the unstable linear wave modes calculated for an homogeneous plasma with Maxwellian electron and bi-Maxwellian (anisotropic) proton and alpha particle distributions. The Alfvén ion cyclotron (AIC) mode appears to be dominant in the data, but there are also density fluctuations nearly in phase with the magnetic fluctuations parallel to the magnetic field. Such a phase relation can be explained neither by the presence of a proton or helium AIC mode nor by the presence of a fast mode in a bi-Maxwellian plasma. We invoke the presence of the helium cut-off mode which is marginally stable in a bi-Maxwellian plasma with 〈alpha〉 particles: the observed phase relation could be due to a hybrid mode (proton AIC + helium cut-off) generated by a non-Maxwellian or a non-gyrotropic part of the ion distribution functions in the upstream magnetosheath. On 2 September 1981 the properties of the fluctuations observed in the middle of the magnetosheath can be explained by pure AIC waves generated by protons which have reached a bi-Maxwellian equilibrium. For a given wave mode, the phase difference between B\Vert and the density is sensitive to the shape of the ion and electron distribution functions: it can be a diagnosis tool for natural and simulated plasmas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 34 (1983), S. 113-126 
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The mechanism by which ions are accelerated near the Earth's bow shock and near shocks propagating outward from the Sun in response to solar activity appears to be essentially the same. For both types of shock the solar wind thermal distribution acts as a seed population. Leaked magnetospheric ions and resident flare ions are additional seed populations for the bow shock and outward propagating shocks respectively. The acceleration of solar wind ions at these shocks begins with either the reflection of ions off the shock or leakage of shocked plasma back through the shock. Interaction with a disruption wave field self-generated by these backstreaming ions is responsible for the remainder of the acceleration at the bow shock. Both the disruption wave field and the ambient interplanetary wave field play important roles in accelerating ions at outward propagating shocks, but on different time scales. The geometry of the shock and the duration of field line connection to the shock play decisive roles in determining what is observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The early ISEE orbits provided the opportunity to study the magnetopause and its environs only a few Earth radii above the subsolar point. Measurements of complete two-dimensional ion and electron distributions every 3 or 12 s, and of three-dimensional distributions every 12 or 48 s by the LASL/MPI instrumentation on both spacecraft allow a detailed study of the plasma properties with unprecedented temporal resolution. This paper presents observations obtained during four successive inbound orbits in November 1977, containing a total of 9 magnetopause crossings, which occurred under widely differing orientations of the external magnetic field. The main findings are: (1) The magnetosheath flow near the magnetopause is characterized by large fluctuations, which often appear to be temporal in nature. (2) Between ∼ 0.1 and ∼ 0.3R E outside the magnetopause, the plasma density and pressure often start to gradually decrease as the magnetopause is approached, in conjunction with an increase in magnetic field strength. These observations are in accordance with the formation of a depletion layer due to the compression of magnetic flux tubes. (3) In cases where the magnetopause can be well resolved, it exhibits fluctuations in density, and especially pressure and bulk velocity around average magnetosheath values. The pressure fluctuations are anticorrelated with simultaneous magnetic field pressure changes. (4) In ope case the magnetopause is characterized by substantially displaced electron and proton boundaries and a proton flow direction change from upwards along the magnetopause to a direction tranverse to the geomagnetic field. These features are in agreement with a model of the magnetopause described by Parker. (5) The character of the magnetopause sometimes varies strongly between ISEE-1 and -2 crossings which occur ∼ 1 min apart. At times this is clearly the result of highly non-uniform motions. There are also cases where there is very good agreement between the structures observed by the two satellites. (6) In three of the nine crossings no boundary layer was present adjacent to the magnetopause. More remarkably, two of the three occurred while the external magnetic field had a substantial southward component, in clear contradiction to expectations from current reconnection models. (7) The only thick (low-latitude) boundary layer (LLBL) observed was characterized by sharp changes at its inner and outer edges. This profile is difficult to reconcile with local plasma entry by either direct influx or diffusion. (8) During the crossings which showed no boundary layer adjacent to the magnetopause, magnetosheath-like plasma was encountered sometime later. Possible explanations include the sudden formation of a boundary layer at this location right at the time of the encounter, and a crossing of an ‘inclusion’ of magnetosheath plasma within the magnetosphere. (9) The flow in the LLBL is highly variable, observed directions include flow towards and away from the subsolar point, along the geomagnetic field and across it, tangential and normal to the magnetopause. Some of these features clearly are nonstationary. The scale size over which the flow directions change exceeds the separation distance (several hundred km) of the two spacecraft.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract High temporal resolution measurements of solar wind electrons at the Earth's bow shock on the dawn side have been made with the LASL/MPI fast plasma experiments on ISEE-1 and 2. One dimensional, 1-d, temperatures, T e , and densities, N e , are obtained every 0.3 s and 2-d values are obtained every 3 s. Profiles of T e and N e at the shock usually are found to be similar to one another and also to the profile of the magnetic field magnitude. The time scale of electron thermalization varies from about 0.5 s to greater than 1 min, depending importantly on the shock motion and the orientation of the magnetic field. Typical thermalization times from 05:00–12:00 LT are ∼10 s, considerably shorter than proton thermalization times at the shock. This time scale corresponds to a distance of ∼100 km, comparable to but somewhat larger than the typical ion inertial length. The electron thermalization times are significantly longer than some of the values frequently cited in the past. At the end of the electron thermalization there typically is an overshoot in electron thermal pressure followed by an undershoot which give the pressure profile of the shock the appearance of a damped wave. Ion thermalization is essentially completed by the time the electron pressure wave is ‘damped’. The most probable value of the electron temperature ratio across the shock is 1.7, and this value is relatively independent of the Sun-Earth-satellite angle, θ ss , for θ ss between 25° and 100°. The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the Department of Energy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Ulysses plasma observations reveal that the forward shocks that commonly bound the leading edges of corotating interaction regions (CIRs) beyond ∼2 AU from the Sun at low heliographic latitudes nearly disappeared at a latitude of S26°. On the other hand, the reverse shocks that commonly bound the trailing edges of the CIRs were observed regularly up to S41.5°, but became weaker with increasing latitude. Only three CIR shocks have been observed poleward of S41.5°; all of these were weak reverse shocks. The above effects are a result of the forward waves propagating to lower heliographic latitudes and the reverse waves to higher latitudes with increasing heliocentric distance. These observational results are in excellent agreement with the predictions of a global model of solar wind flows that originate in a simple tilted-dipole geometry back at the Sun.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Plasma and magnetic field signatures from 29 November 1990 indicate that the Ulysses spacecraft passed through a series of interplanetary structures that were most likely formed by magnetic reconnection on open field lines ahead of a coronal mass ejection (CME). This reconnection changed the magnetic topology of the upstream region by converting normal open interplanetary magnetic field into a pair of regions: one magnetically disconnected from the Sun and the other, a tongue, connected back to the Sun at both ends. This process provides a new method for producing both heat flux dropouts and counterstreaming suprathermal electron signatures in interplanetary space. In this paper we expand upon the 29 November case study and argue that reconnection ahead of CMEs should be less common at high heliolatitudes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Ulysses plasma measurement from 1.15 to 5.31 AU and from S6.4° to S48.3° solar latitude are used to assess the trends in the solar wind thermal electron temperature and anisotropy. Improved spacecraft potential corrections and data products have been incorporated. The radial temperature gradient is steeper than in previous determinations, but flatter than adiabatic. When normalized to 1 AU, temperature decrease with increasing latitude. Little change in the average thermal anisotropy has been seen during the mission.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 72 (1995), S. 93-98 
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In the 25 months since Jupiter flyby, the Ulysses spacecraft has climbed southward to a heliolatitude of 56°. This transit has been marked by an evolution from slow, dense coronal streamer belt solar wind through two regions where the rotation of the Sun carried Ulysses back and forth between streamer belt and polar coronal hole flows, and finally into a region of essentially continuous fast, low density solar wind from the southern polar coronal hole. Throughout these large changes, the momentum flux normalized to 1 AU displays very little systematic variation. In addition, the bulk properties of the polar coronal hole solar wind are quite similar to those observed in high speed streams in the ecliptic plane at 1 AU. Coronal mass ejections and forward and reverse shocks associated with corotating interaction regions have also been observed at higher heliolatitudes, however they are seen less frequently with increasing southern heliolatitude. Ulysses has thus far collected data from 20° of nearly contiguous solar wind flows from the polar coronal hole. We examine these data for characteristic variations with heliolatitude and find that the bulk properties in general show very little systematic variation across the southern polar coronal hole so far.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 72 (1995), S. 133-136 
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Nine coronal mass ejections (CMEs) have been detected in the solar wind by the Ulysses plasma experiment between 31° and 61° South. One of these events, which was also a magnetic cloud, was directly associated with an event observed by the soft X-ray telescope on Yohkoh in which large magnetic loops formed in the solar corona directly beneath Ulysses. This association suggests that the flux rope topology of the magnetic cloud resulted from reconnection between the “legs” of neighboring magnetic loops within the rising CME. The average CME speed (∼740 km s−1) at these latitudes was comparable to that of the normal solar wind there and is much greater than average CME speeds observed either in the solar wind in the ecliptic plane or in the corona close to the Sun. We suggest that the same basic acceleration process applies to both slow CMEs and the normal solar wind at any latitude.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We report observations of radial and latitudinal gradients of Ulysses plasma parameters. The solar wind velocity increased rapidly with latitude from 0° to 35°, then remained approximately constant at higher latitudes. Solar wind density decreased rapidly from 0° to 35° of latitude, and also was approximately constant beyond that latitude. The mass flux similarly decreased away from the equator (but less than the density), whereas the momentum flux was relatively constant. The radial gradient of the entropy at high latitude indicated a value for the polytrope index of about 1.72 (close to adiabatic); the in-ecliptic estimates of radial gradients for temperature and entropy may be biased by temporal variation. A striking increase in the alpha particle-proton velocity difference with latitude is found.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...