ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 8 (1989), S. 779-794 
    ISSN: 1573-4943
    Keywords: circular dichroism ; glycopeptides ; glycoprotein hormones
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The β subunit of human choriogonadotropin (hCGβ) and its asialoderivative were digested with trypsin and then reduced and S-carboxymethylated. A series of peptides were purified which corresponded to residues 1–43, 44–95, 96–114, and 123–145 of the 145 amino acid residue glycoprotein. The two N-linked oligosaccharides were present on the amino terminal peptide, and three of the four O-linked oligosaccharides were present on the carboxy terminal peptide. Circular dichroic spectra between 190–240 nm were obtained on reduced, S-carboxymethylated (RCM) hCGβ and the above peptides, both in aqueous solution and in the helicogenic solvent 80% (vol/vol) trifluoroethanol (TFE). In aqueous solution there was evidence of only limited helicity in the peptides and RCM-hCGβ however, in the presence of TFE, peptides 1–43 and 44–95 exhibited significant helicity, as did the full-length linear chain. The helicity developed in TFE by RCM-hCGβ appears much greater than that which occurs in the native, disulfide-intact form, thus suggesting that the disulfides prevent expression of helicity in regions with α-helix potential. Application of the Chou-Fasman secondary structure predictive algorithm to hCGβ suggested that several regions of helix potential, in particular regions 14–21, 59–69, and perhaps 80–88, may account for much of the helicity observed in peptides 1–43 and 44–95, respectively, in TFE. The region from 96–145 has no significant potential for helicity, consistent with the measured circular dichroic spectra of peptides 96–114 and 123–145. These results demonstrate that helicity can occur in the linear form of hCGβ, and this secondary structure can best be attributed to the amino terminal and the middle portion of the molecule. Several potential regions of β-structure and β-turns were also suggested.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5001
    Keywords: Glycoprotein hormone ; hCG ; Non-radioactive labeling ; CHO cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Most secreted eukaryotic proteins are modified by glycosylation, and it has been difficult to solve their structures by crystallographic or NMR techniques because of problems posed by the presence of the carbohydrate. The structure of a chemically deglycosylated form of the human pregnancy hormone, human chorionic gonadotropin (hCG), has been solved by crystallographic methods. Since chemical deglycosylation may have induced changes in the structure, and since it is known that deglycosylated hCG is biologically inactive, the crystallographic structure requires confirmation by NMR techniques. Also, it has not been possible to determine the structures of the isolated subunits, nor the nature of interactions between the carbohydrate side chains and the protein back bone by crystallographic methods. Structural information via NMR techniques can be obtained from proteins in solution if they can be uniformly labeled with 13C and 15N isotopes. We report the first such uniform labeling of a glycoprotein using a universal 13C-and 15N-labeling medium to express 13C, 15N-labeled hCG, suitable for solving the structure in solution of the native, biologically active form of hCG as well as that of its free subunits. The 13C, 15N-labeled recombinant hCG and its separated subunits are shown to be nearly identical to urinary hCG reference preparations on the basis of protein chemical studies, immunochemistry, biological activity, and the capability of isolated hormone subunits to recombine to form biologically active hormone. Mass spectrometric analysis and preliminary NMR studies indicate that the isotopic labeling is uniform and greater than 90% after only two growth passages in the labeling media. One unexpected finding during subunit purification was that lyophilization of glycoproteins from trifluoroacetic acid HPLC buffers may result in the loss of a significant portion of sialic acid.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...