ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: ZSP-686-220
    In: Report
    Pages: 63 S. : graph. Darst.
    Series Statement: Report / Max-Planck-Institut für Meteorologie 220
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 116 (1978), S. 497-510 
    ISSN: 1420-9136
    Keywords: 1-D model ; Ozone perturbation ; Photochemistry ; Sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract With the aid of a one-dimensional steady-state, stratospheric model we have calculated ozone changes coused by atmosphric injections of NOx, N2O and chlorofluoromethanes. Adopting the fast rate constant, for the reaction HO2+NO»OH+NO2 measured by Howard and Evenson, we calculate much smaller perturbations of the ozone layer by NOx and N2O additions than previously estimated, but about two times larger ozone reductions as a result of continued emissions of chlorofluoromethanes, CF2Cl2 and CFCl3. The model results are sensitive to adopted values for the rate coefficients for the reactions HO2+O3»OH+2O2 and OH+HO2»H2O+O2 and the eddy diffusion profile near the tropopause. More accurate assessments of ozone perturbations require the development of photochemical models that incorporate meteorological processes in more than one dimension.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1420-9136
    Keywords: Solar Mesosphere Explorer ; Ozone ; Water vapor ; Solar ultraviolet monitor ; Limb radiance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The 1981–82 Solar Mesosphere Explorer (SME) mission is described. The SME experiment will provide a comprehensive study of mesospheric ozone and the processes which form and destroy it. Five instruments will be carried on the spinning spacecraft to measure the ozone density and its altitude distribution from 30 to 80 km, monitor the incoming solar ultraviolet radiation, and measure other atmospheric constituent which affect ozone. The polar-orbiting spacecraft will be placed into a 3pm-3 am Sun-synchronous orbit. The atmospheric measurements will scan the Earth's limb and measure: (1) the mesospheric and stratospheric ozone density distribution by inversion of Rayleigh-scattered ultraviolet limb radiance, and the thermal emission from ozone at 9.6 μm; (2) the water vapor density distribution by inversion of thermal emission at 6.3 μm; (3) the ozone photolysis rate by inversion of the O2(1Δg) 1.27 μm limb radiance; (4) the temperature profile by a combination of narrow-band and wide-band measurements of the 15 μm thermal emission by CO2; and, (5) theNO2 density distribution by inversion of Rayleighscattered limb radiance at 0.439 μm. The solar ultraviolet monitor will measure both the 0.2–0.31 μm spectral region and the Lyman-alpha (0.1216 μm) contribution to the solar irradiance. This combination of measurements will provide a rigorous test of the photochemical equilibrium theory of the mesospheric oxygen-hydrogen system, will determine what changes occur in the ozone distribution as a result of changes in the incoming solar radiation, and will detect changes that may occur as a result of meteorological disturbances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A one-dimensional coupled climate and chemistry model has been developed to estimate past and possible future changes in atmospheric temperatures and chemical composition due to human activities. The model takes into account heat flux into the oceans and uses a new tropospheric temperature lapse rate formulation. As found in other studies, we estimate that the combined “greenhouse effect” of CH4, O3, CF2Cl2, CFCl3 and N2O in the future will be about as large as that of CO2. Our model calculates an increase in average global surface temperatures by about 0.6°C since the start of the industrial era and predicts for A.D. 2050 a twice as large additional rise. Substantial depletions of ozone in the upper stratosphere by between 25% and 55% are calculated, depending on scenario. Accompanying temperature changes are between 15°C and 25°C. Bromine compounds are found to be important, if no rigid international regulations on CFC emissions are effective. Our model may, however, concivably underestimate possible effects of CFCl3, CF2Cl2, C2F3Cl3 and other CFC and organic bromine emissions on lower stratospheric ozone, because it can not simulate the rapid breakdown of ozone which is now being observed worldwide. An uncertainty study regarding the photochemistry of stratospheric ozone, especially in the region below about 25 km, is included. We propose a reaction, involving excited molecular oxygen formation from ozone photolysis, as a possible solution to the problem of ozone concentrations calculated to be too low above 45 km. We also estimate that tropospheric ozone concentrations have grown strongly in the northern hemisphere since pre-industrial times and that further large increases may take place, especially if global emissions of NOx from fossil fuel and biomass burning were to continue to increase. Growing NOx emissions from aircraft may play an important role in ozone concentrations in the upper troposphere and low stratosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-0662
    Keywords: aerosol ; iodine chemistry ; halogen chemistry ; marine boundary layer ; modeling ; ozone loss ; sea salt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A detailed set of reactions treating the gas and aqueous phase chemistry of the most important iodine species in the marine boundary layer (MBL) has been added to a box model which describes Br and Cl chemistry in the MBL. While Br and Cl originate from seasalt, the I compounds are largely derived photochemically from several biogenic alkyl iodides, in particular CH2I2, CH2ClI, C2H5I, C3H7I, or CH3I which are released from the sea. Their photodissociation produces some inorganic iodine gases which can rapidly react in the gas and aqueous phase with other halogen compounds. Scavenging of the iodine species HI, HOI, INO2, and IONO2 by aerosol particles is not a permanent sink as assumed in previous modeling studies. Aqueous-phase chemical reactions can produce the compounds IBr, ICl, and I2, which will be released back into the gas phase due to their low solubility. Our study, although highly theoretical, suggests that almost all particulate iodine is in the chemical form of IO-3. Other aqueous-phase species are only temporary reservoirs and can be re-activated to yield gas phase iodine. Assuming release rates of the organic iodine compounds which yield atmospheric concentrations similar to some measurements, we calculate significant concentrations of reactive halogen gases. The addition of iodine chemistry to our reaction scheme has the effect of accelerating photochemical Br and Cl release from the seasalt. This causes an enhancement in ozone destruction rates in the MBL over that arising from the well established reactions O(1D) + H2O → 2OH, HO2 + O3 → OH + 2O2, and OH + O3 → HO2 + O2. The given reaction scheme accounts for the formation of particulate iodine which is preferably accumulated in the smaller sulfate aerosol particles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-0662
    Keywords: upper stratosphere ; ozone budget ; ozone deficit problem ; HALOE
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract On the basis of data obtained by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) box model calculations are performed to investigate the ozone budget in the upper stratosphere. The HALOE data comprise measurements of major source gases and key chemical species involved in the ozone destruction cycles. In comparison to earlier calculations using version 17 of the HALOE data, the calculated ozone destruction rate increases when the updated data version 18 is used. However, as with the previous study using version 17 of the HALOE data, no evidence for a significant model ozone deficit is found.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-0662
    Keywords: non-methane hydrocarbons ; ozone ; HO x ; CO ; NO x ; tropospheric chemistry ; global ; 3-d modeling ; upper troposphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The impact of natural and anthropogenicnon-methane hydrocarbons (NMHC) on troposphericchemistry is investigated with the global,three-dimensional chemistry-transport model MOGUNTIA.This meteorologically simplified model allows theinclusion of a rather detailed scheme to describeNMHC oxidation chemistry. Comparing model resultscalculated with and without NMHC oxidation chemistryindicates that NMHC oxidation adds 40–60% to surfacecarbon monoxide (CO) levels over the continents andslightly less over the oceans. Free tropospheric COlevels increase by 30–60%. The overall yield of COfrom the NMHC mixture considered is calculated to beabout 0.4 CO per C atom. Organic nitrate formationduring NMHC oxidation, and their transport anddecomposition affect the global distribution of NO x and thereby O3 production. The impact of theshort-lived NMHC extends over the entire tropospheredue to the formation of longer-lived intermediateslike CO, and various carbonyl and carboxyl compounds.NMHC oxidation almost doubles the net photochemicalproduction of O3 in the troposphere and leads to20–80% higher O3 concentration inNO x -rich boundarylayers, with highest increases over and downwind ofthe industrial and biomass burning regions. Anincrease by 20–30% is calculated for the remotemarine atmosphere. At higher altitudes, smaller, butstill significant increases, in O3 concentrationsbetween 10 and 60% are calculated, maximizing in thetropics. NO from lightning also enhances the netchemical production of O3 by about 30%, leading to asimilar increase in the global mean OH radicalconcentration. NMHC oxidation decreases the OH radicalconcentrations in the continental boundary layer withlarge NMHC emissions by up to 20–60%. In the marineboundary layer (MBL) OH levels can increase in someregions by 10–20% depending on season and NO x levels.However, in most of the MBL OH will decrease by10–20% due to the increase in CO levels by NMHCoxidation chemistry. The large decreases especiallyover the continents strongly reduce the markedcontrasts in OHconcentrations between land and oceanwhich are calculated when only the backgroundchemistry is considered. In the middle troposphere, OHconcentrations are reduced by about 15%, although dueto the growth in CO. The overall effect of thesechanges on the tropospheric lifetime of CH4 is a 15%increase from 6.5 to 7.4 years. Biogenic hydrocarbonsdominate the impact of NMHC on global troposphericchemistry. Convection of hydrocarbon oxidationproducts: hydrogen peroxides and carbonyl compounds,especially acetone, is the main source of HO x in theupper troposphere. Convective transport and additionof NO from lightning are important for the O3 budgetin the free troposphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-0662
    Keywords: isoprene oxidation ; global atmospheric modeling ; condensed chemical mechanism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A new condensed isoprene oxidation mechanism forglobal atmospheric modeling (MIM) was derived from ahighly detailed master chemical mechanism (MCM). In abox model intercomparison covering a wide range ofboundary layer conditions the MIM was compared withthe MCM and with five other condensed mechanisms, someof which have already been used in global modelingstudies of nonmethane hydrocarbon chemistry. Theresults of MCM and MIM were generally in goodagreement, but the other tested mechanisms exhibitedsubstantial differences relative to the MCM as well asrelative to each other. Different formation yields,reactivities and degradation pathways of organicnitrates formed in the course of isoprene oxidationwere identified as a major reason for the deviations.The relevance of the box model results for chemistrytransport models is discussed, and the need for avalidated reference mechanism and for an improvedrepresentation of isoprene chemistry in global modelsis pointed out.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 37 (2000), S. 81-112 
    ISSN: 1573-0662
    Keywords: precipitation scavenging ; Henry's Lawdependence ; global model study ; convection ; gasrejection on freezing ; trace gas vertical transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract With the global Chemistry-Transport model MATCHsensitivity simulations were performed to determinethe degree to which especially upward transport ofgases from the earth's surface is limited byconvective and large-scale precipitation scavenging.When only dissolution of species in the liquid phaseis taken into account, mixing ratio reductions in themiddle and upper troposphere by ≈10% arecalculated for gases with a Henry's Law constant H of103 mol/l/atm. The removal increases to ≈50% forH = 104 mol/l/atm, and to 90% for H =105 mol/l/atm. We also consider scavenging by theice phase, which is generally much less efficient thanby the aqueous phase. In fact, rejection of gases fromfreezing water droplets may be a source of trace gasat higher altitudes.H2O2 and the strong acids (H2SO4,HNO3, HCl, HBr, HI) have such large solubilitiesthat they become largely removed by precipitation.When significant concentrations of these gases andsulfate aerosol exist above the liquid water domain ofthe atmosphere, they have likely been produced thereor at higher altitudes, although some could have comefrom trace gas rejection from ice particles or fromevaporating hydrometeors. Several other gases areaffected by precipitation, but not strongly enough toprevent fractional transfer to the middle and uppertroposphere: e.g., HNO4, HNO2 at pH ≤5,CH2O, the organic acids at pH ≤6,CH3SOCH3, HOCl, HOBr, and HOI. NH3 islargely removed by liquid phase scavenging at pH ≤7 and SO2 atpH ≥7. At pH less thanabout 6, upward transport of SO2 should largelydepend on the efficiency of oxidation processes in thewater droplets by O3 and H2O2.Most gases have solubilities which are too low forsignificant precipitation scavenging and aqueous phaseoxidation to occur. This holds, e.g., for O3, CO,the hydrocarbons, NO, NO2, HCN, CH3CN,CH3SCH3, CH3O2H, CH3CHOandhigher aldehydes, CH3OH and higher alcohols,peroxyacetylnitrate (PAN), CH3COCH3 andother ketones (note that some of these are not listedin Table I because their solubilities are below 10mol/l/atm). Especially for the short-lived gases,transfer from the boundary layer to the middle andupper troposphere is actually promoted by the enhancedupward transport that occurs in clouds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 19 (1994), S. 331-369 
    ISSN: 1573-0662
    Keywords: Global model ; emission inventory ; ammonia ; ammonium ; nitrous oxide ; acidity ; canopy compensation point
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Using a three-dimensional (3-D) transport model of the troposphere, we calculated the global distributions of ammonia (NH3) and ammonium (NH 4 + ), taking into account removal of NH3 on acidic aerosols, in liquid water clouds and by reaction with OH. Our estimated global 10°×10° NH3 emission inventory of 45 Tg N-NH3 yr− provides a reasonable agreement between calculated wet NH 4 + deposition and measurements and of measured and modeled NH 4 + in aerosols, although in Africa and Asia especially discrepancies exist. NH3 emissions from natural continental ecosystems were calculated applying a canopy compensation point and oceanic NH3 emissions were related to those of DMS (dimethylsulfide). In many regions of the earth, the pH found in rain and cloud water can be attributed to acidity derived from NO, SO2 and DMS emissions and alkalinity from NH3. In the remote lower troposphere, sulfate aerosols are calculated to be almost neutralized to ammonium sulfate (NH4)2SO4, whereas in the middle and upper troposphere, according to our calculations, the aerosol should be more acidic, as a result of the oxidation of DMS and SO2 throughout the troposphere and removal of NH3 on acidic aerosols at lower heights. Although the removal of NH3 by reaction with the OH radical is relatively slow, the intermediate NH2 radical can provide a substantial annual N2O source of 0.9 −0.4 +0.9 Tg, thus contributing byca. 5% to estimated global N2O production. The oxidation by OH of NH3 from anthropogenic sources accounts for 10% of the estimated total anthropogenic sources of N2O. This source was not accounted for in previous studies, and is mainly located in the tropics, which have high NH3 and OH concentrations. Biomass burning plumes, containing high NO x and NH3 concentrations provide favourable conditions for gas phase N2O production. This source is probably underestimated in this model study, due to the coarse resolution of the 3-D model, and the rather low biomass burning NH3 and NO x emissions adopted. The estimate depends heavily on poorly known concentrations of NH3 (and NO x ) in the tropics, and uncertainties in the rate constants of the reactions NH2 + NO2 → N2O + H2O (R4), and NH2 + O3 → NH2O + O2 (R7).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...