ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (7)
  • AMS (American Meteorological Society)  (4)
  • 1
    Publication Date: 2017-12-16
    Print ISSN: 0256-1530
    Electronic ISSN: 1861-9533
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-07
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-24
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Downward wave coupling (DWC) is an important process that characterizes the dynamical coupling between the stratosphere and troposphere via planetary wave reflection. A recent modeling study indicated that natural forcing factors, including sea-surface temperature variability and quasi-biennial oscillation, influence DWC and the associated surface impact in the Northern Hemisphere (NH). In light of this, we further investigate how DWC in the NH is affected by anthropogenic forcings, using a fully coupled chemistry-climate model CESM1 (WACCM). The results indicate that the occurrence of DWC is significantly suppressed in the future, starting later in the seasonal cycle, with more events concentrated in late winter (February-March). The future decrease in DWC events is associated with enhanced wave absorption in the stratosphere due to increased greenhouse gases. The enhanced wave absorption is manifest as more absorbing types of stratospheric sudden warmings, with more events concentrated in early winter. This early winter condition leads to a delay in the development of the upper stratospheric reflecting surface, resulting in a shift in the seasonal cycle of DWC towards late winter. The tropospheric responses to DWC events in the future exhibit different spatial patterns compared to those of the past. In the North Atlantic sector, DWC-induced circulation changes are characterized by a poleward shift and an eastward extension of the tropospheric jet, while in the North Pacific sector, the circulation changes are characterized by a weakening of the tropospheric jet. These responses are consistent with a change in the pattern of DWC-induced synoptic-scale eddy-mean flow interaction.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-04
    Description: Downward wave coupling occurs when an upward propagating planetary wave from the troposphere decelerates the flow in the upper stratosphere, and forms a downward reflecting surface that redirects waves back to the troposphere. To test this mechanism and potential factors influencing the downward wave coupling, three 145-year sensitivity simulations with NCAR’s Community Earth System Model (CESM-WACCM), a state-of-the-art high-top chemistry-climate model, are analyzed. The results show that the QBO and SST variability significantly impact downward wave coupling. Without the QBO, the occurrence of downward wave coupling is significantly suppressed. In contrast, stronger and more persistent downward wave coupling occurs when SST variability is excluded. The above influence on the occurrence of downward wave coupling is mostly due to a direct influence of the QBO and SST variability on stratospheric planetary wave source and propagation. The strengths of the tropospheric circulation and surface responses to a given downward wave coupling event, however, behave differently. The surface anomaly is significantly weaker (stronger) in the experiment with fixed SSTs (without QBO), even though the statistical signal of downward coupling is strongest (weakest) in this experiment. This apparent mismatch is explained by the differences in the strength of the synoptic-scale eddy-mean flow feedback and the possible contribution of SST anomalies in the North Atlantic during DWC event. The weaker synoptic-scale eddy-mean flow feedback, and the absence of the positive NAO-related SST-tripole pattern in the fixed SST experiment are consistent with a weaker tropospheric response in this experiment. The results highlight the importance of synoptic-scale eddies in setting the tropospheric response to downward wave coupling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 73 (6). pp. 2509-2528.
    Publication Date: 2020-08-04
    Description: There is evidence that the strengthened stratospheric westerlies arising from the Antarctic ozone hole–induced cooling cause a polar mesospheric warming and a subsequent cooling in the lower thermosphere. While previous studies focus on the role of nonresolved (gravity) wave drag filtering, here the role of resolved (planetary) wave drag and radiative forcing on the Antarctic mesosphere and lower thermosphere (MLT) is explored in detail. Using simulations with NCAR’s Community Earth System Model, version 1 (Whole Atmosphere Community Climate Model) [CESM1(WACCM)], it is found that in late spring and early summer the anomalous polar mesospheric warming induced by easterly nonresolved wave drag is dampened by anomalous dynamical cooling induced by westerly resolved wave drag. This resolved wave drag is attributed to planetary-scale wave (k = 1–3) activity, which is generated in situ as a result of increased instability of the summer mesospheric easterly jet induced by the ozone hole. On the other hand, the anomalous cooling in the polar lower thermosphere induced by westerly nonresolved wave drag is enhanced by anomalous dynamical cooling due to westerly resolved wave drag. In addition, radiative effects from increased greenhouse gases during the ozone hole period contribute partially to the cooling in the polar lower thermosphere. The polar MLT temperature response to the Antarctic ozone hole is, through thermal wind balance, accompanied by the downward migration of anomalous zonal-mean wind from the lower thermosphere to the stratopause. The results highlight that a proper accounting of both dynamical and radiative effects is required in order to correctly attribute the causes of the polar MLT response to the Antarctic ozone hole.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-01
    Description: The instrumental records indicate that the basin-wide wintertime North Atlantic warm conditions are accompanied by a pattern resembling negative North Atlantic oscillation (NAO), and cold conditions with pattern resembling the positive NAO. This relation is well reproduced in a control simulation by the stratosphere resolving atmosphere–ocean coupled Max-Planck-Institute Earth System Model (MPI-ESM). Further analyses of the MPI-ESM model simulation shows that the large-scale warm North Atlantic conditions are associated with a stratospheric precursory signal that propagates down into the troposphere, preceding the wintertime negative NAO. Additional experiments using only the atmospheric component of MPI-ESM (ECHAM6) indicate that these stratospheric and tropospheric changes are forced by the warm North Atlantic conditions. The basin-wide warming excites a wave-induced stratospheric vortex weakening, stratosphere/troposphere coupling and a high-latitude tropospheric warming. The induced high-latitude tropospheric warming is associated with reduction of the growth rate of low-level baroclinic waves over the North Atlantic region, contributing to the negative NAO pattern. For the cold North Atlantic conditions, the strengthening of the westerlies in the coupled model is confined to the troposphere and lower stratosphere. Comparing the coupled and uncoupled model shows that in the cold phase the tropospheric changes seen in the coupled model are not well reproduced by the standalone atmospheric configuration. Our experiments provide further evidence that North Atlantic Ocean variability (NAV) impacts the coupled stratosphere/troposphere system. As NAV has been shown to be predictable on seasonal-to-decadal timescales, these results have important implications for the predictability of the extra-tropical atmospheric circulation on these time-scales
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Recent studies show that mid-latitude SST variations over the Kuroshio-Oyashio Extension influence the atmospheric circulation. However, the impact of variations in SST in the Gulf Stream region on the atmosphere has been less studied. Understanding the atmospheric response to such variability can improve the climate predictability in the North Atlantic Sector. Here we use a relatively high resolution (∼1°) Atmospheric General Circulation Model to investigate the mechanisms linking observed 5-year low-pass filtered SST variability in the Gulf Stream region and atmospheric variability, with focus on precipitation. Our results indicate that up to 70 % of local convective precipitation variability on these timescales can be explained by Gulf Stream SST variations. In this region, SST and convective precipitation are strongly correlated in both summer (r = 0.73) and winter (r = 0.55). A sensitivity experiment with a prescribed local warm SST anomaly in the Gulf Stream region confirms that local SST drives most of the precipitation variability over the Gulf Stream. Increased evaporation connected to the anomalous warm SST plays a crucial role in both seasons. In summer there is an enhanced local SLP minimum, a concentrated band of low level convergence, deep upward motion and enhanced precipitation. In winter we also get enhanced precipitation, but a direct connection to deep vertical upward motion is not found. Nearly all of the anomalous precipitation in winter is connected to passing atmospheric fronts. In summer the connection between precipitation and atmospheric fronts is weaker, but still important.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-09-13
    Description: There is evidence that the observed changes in winter North Atlantic Oscillation (NAO) drive a significant portion of Atlantic Multi Decadal Variability (AMV). However, whether the observed decadal NAO changes can be forced by the ocean is controversial. There is also evidence that artificially imposed multi-decadal stratospheric changes can impact the troposphere in winter. But the origins of such stratospheric changes are still unclear, especially in early to mid winter, where the radiative ozone-impact is negligible. Here we show, through observational analysis and atmospheric model experiments, that large-scale Atlantic warming associated with AMV drives high-latitude precursory stratospheric warming in early to mid winter that propagates downward resulting in a negative tropospheric NAO in late winter. The mechanism involves stratosphere/troposphere dynamical coupling, and can be simulated to a large extent, but only with a stratosphere resolving model (i.e., high-top). Further analysis shows that this precursory stratospheric response can be explained by the shift of the daily extremes toward more major stratospheric warming events. This shift cannot be simulated with the atmospheric (low-top) model configuration that poorly resolves the stratosphere and implements a sponge layer in upper model levels. While the potential role of the stratosphere in multi-decadal NAO and Atlantic meridional overturning circulation changes has been recognised, our results show that the stratosphere is an essential element of extra-tropical atmospheric response to ocean variability. Our findings suggest that the use of stratosphere resolving models should improve the simulation, prediction, and projection of extra-tropical climate, and lead to a better understanding of natural and anthropogenic climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: Major sudden stratospheric warmings (SSWs) are extreme events during boreal winter, which not only impact tropospheric weather up to three months but also can influence oceanic variability through wind stress and heat flux anomalies. In the North Atlantic region, SSWs have the potential to modulate deep convection in the Labrador Sea and thereby the strength of the Atlantic meridional overturning circulation. The impact of SSWs on the Northern Hemisphere surface climate is investigated in two coupled climate models: a stratosphere-resolving (high top) and a non-stratosphere-resolving (low top) model. In both configurations, a robust link between SSWs and a negative NAO is detected, which leads to shallower-than-normal North Atlantic mixed layer depth. The frequency of SSWs and the persistence of this link is better captured in the high-top model. Significant differences occur over the Pacific region, where an unrealistically persistent Aleutian low is observed in the low-top configuration. An overrepresentation of SSWs during El Nino conditions in the low-top model is the main cause for this artifact. Our results underline the importance of a proper representation of the stratosphere in a coupled climate model for a consistent surface response in both the atmosphere and the ocean, which, among others, may have implications for oceanic deep convection in the subpolar North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...