ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    SEG (Society of Economic Geologists)
    Publication Date: 2023-08-16
    Description: Deep-sea mining is taking another step closer to reality. Early leases for exploration in the central Pacific manganese nodule fields and elsewhere in the oceans are coming to an end, and contractors are faced with a choice—extend the licenses to continue exploration or apply to mine the deposits they have found. The first 15-year licenses were originally signed into effect by the International Seabed Authority (ISA) in 2001 and began to expire in 2016. With no operations in a position to commence mining and, more importantly, no regulations in place to allow it, most exploration licenses were simply renewed. Eight of the original licenses were extended for five more years, some twice, and new licenses have been granted. Today, there are 31 contracts for exploration: 19 for manganese nodules, 7 for sea-floor massive sulfides, and 5 for Co-rich crusts. The first contract for massive sulfide exploration expires in 2026; the first for Co-rich crusts expires in 2029. Meanwhile, there is strong interest from a number of countries in the mineral resource potential of their exclusive economic zones (EEZs), particularly Japan and Norway. Against this backdrop of rapidly shifting exploration activity, it may be time to take another look at marine minerals as a resource for the future. In a report entitled “The Future of the Ocean Economy by 2030,” the Organization for Economic Cooperation and Development (OECD) asked, “What new developments could result in a complete revision of offshore mineral potential?” For most parts of the oceans, the answer to this question is plagued by inadequate mapping and a lack of geologic knowledge as a basis for assessing the resources. However, new approaches to exploration are emerging, and recent discoveries, such as on the continental shelf and beneath the cover of sediment, are changing our view of the resource potential.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Polymetallic veins and breccias and carbonate-replacement ore deposits in the Cyclades continental back arc, Greece, formed from a range of fluid and metal sources strongly influenced by the dynamics of the late Mesozoic-Cenozoic Hellenic subduction system. These complexities are recorded in the isotopic signatures of hydrothermal barite. We investigated 17 mineral occurrences on four Cycladic islands and from Lavrion on the mainland. Here, barite occurs in almost all deposit types of Miocene to Quaternary age. We used a multiple isotope and geochemical approach to characterize the barite in each deposit, including mineral separate analysis of δ34S and δ18O and laser ablation-inductively coupled plasma-mass spectrometry of 87Sr/86Sr and δ34S. Barite from carbonate-hosted vein and breccia Pb-Zn-Ag mineralization on Lavrion has a wide range of δ34S (2–20‰) and δ18O (10–15‰) values, reflecting a mix of magmatic and surface-derived fluids that have exchanged with isotopically heavy oxygen in the carbonate host rock. Sulfur (δ34S = 10–13‰) and oxygen (δ18O = 9–13‰) values of barite from the carbonate-hosted vein iron and barite mineralization on Serifos are permissive of a magmatic sulfate component. Barite from epithermal base and/or precious metal deposits on Milos has δ34S (17–28‰) and δ18O (9–11‰) values that are similar to modern seawater. In contrast, barite from vein-type deposits on Antiparos and Mykonos has a wide range of δ34S (16–37‰) and δ18O (4–12‰) values, indicating a seawater sulfate source modified by mixing or equilibration of the hydrothermal fluids with the host rocks. Strontium isotope ratios of barite vary regionally, with 87Sr/86Sr ≥ 0.711 in the central Cyclades and 87Sr/86Sr ≤ 0.711 in the west Cyclades, confirming the strong influence of upper crustal rocks on the sources of fluids, Sr, and Ba in the formation of ore.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-15
    Description: Greenstone belts are dominated by mafic volcanic rocks with geochemical characteristics that indicate a range of possible geodynamic influences. Many analogies with modern tectonic settings have been suggested. Increasing exploration of the modern oceans and comprehensive sampling of volcanic rocks from the sea floor are now providing unique opportunities to characterize different melt sources and petrogenesis that can be more closely compared to greenstone belts. In this study, we have compiled high-quality geochemical analyses of more than 2,850 unique samples of submarine mafic volcanic rocks (〈60 wt % SiO2) from a wide range of settings, including mid-ocean ridges, ridge-hotspot intersections, intraoceanic arc and back-arc spreading centers, and ocean islands. The compiled data show significant geochemical variability spanning the full range of compositions of basalts found in greenstone belts. This diversity is interpreted to be due to variable crustal thickness, dry melting versus wet melting conditions, mantle mixing, and contamination. In particular, different melting conditions have been linked to mantle heterogeneity, complex mantle flow regimes, and short-lived tectonic domains, such as those associated with diffuse spreading, overlapping spreading centers, and triple junctions. These are well documented in the microplate mosaics of the Western Pacific. Systematic differences in mafic volcanic rock compositions in modern oceanic settings are revealed by a combination of principal components analysis and unsupervised hierarchical clustering of the compiled data. Mafic volcanic rocks from most arc-backarc systems have strongly depleted mantle signatures and well-known subduction-related chemistry such as large ion lithophile element (LILE) enrichment in combination with strong negative Nb-Ta anomalies and low heavy rare earth elements (HREEs). This contrasts with mafic volcanic rocks in Archean greenstone belts, which show no, or at least weaker, subduction-related chemistry, a less depleted mantle, less wet melting, and variable crustal contamination. The differences are interpreted to be the result of the lower mantle temperatures, thinner crust, and subduction-related processes of present-day settings. However, mafic rocks that are geochemically identical to those in Archean greenstone belts occur in many modern back-arc basins, including the Lau basin, East Scotia ridge, Bransfield Strait, and Manus basin, which are characterized by fertile mantle sources, high heat flow, and complex spreading regimes typical of small-scale microplate mosaics. These types of settings are recognized as favorable for volcanogenic massive sulfide (VMS) deposits in modern and ancient greenstone belts, and therefore the particular geochemical signatures of the mafic volcanic rocks are potentially important for area selection in base metal exploration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...