ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-17
    Description: A metal-free C 60 /CNTs/g-C 3 N 4 nanoheterostructure with excellent visible-light photocatalysis for rhodamine B (Rh B) degradation has been reported. Via a convenient low-temperature solution-phase method, g-C 3 N 4 nanosheets can serve as substrate for dispersion of C 60 /CNTs. The loading of C 60 /CNTs onto g-C 3 N 4 nanosheets surfaces significantly enhanced visible-light-driven photocatalytic activity of g-C 3 N 4 catalyst, for oxidation of organic pollutant (Rh B, 100%). Excellent photocatalytic properties of C 60 /CNTs/g-C 3 N 4 can be predominantly attributed to the intimate interfacial contact among constructing compounds, increased specific surface area and enhanced light adsorption efficiency resulted from C 60 /CNTs carbon materials. Particularly, the synergistic heterostructure interaction remarkably hinders the electron–hole pairs recombination, giving rise to significantly enhanced photocatalytic performance of C 60 /CNTs/g-C 3 N 4 in comparison with other counterparts.
    Keywords: nanotechnology, photochemistry
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-31
    Description: In general, exploitation of rock materials, such as limestone or granite exploitation, can cause serious damage to the environment near a mine area. With economic development and the ever-increasing demand for ore resources, mining activities have induced very serious environmental issues in China. Therefore, environmental restoration work around mines in China is urgently required. This study explores the Chuankou open-pit limestone quarry in Tongchuan City, Shaanxi Province, Northwest China, as the engineering case. The environmental issues caused by over 40 years of limestone exploitation, including land degradation, land occupation, dust pollution and potential geological disasters, were investigated. Combining the characteristics of this quarry with a summary of previous studies on environmental restoration work, this paper proposes a novel and systematic method that was comprehensively carried out through engineering and revegetation measures. The engineering measure, that is, the construction of an artificial slope by using local abandoned construction materials, solved the environmental problems in this quarry and provided site conditions favourable for revegetation. The revegetation measure restored the local ecosystem. This method provides both a new idea for the sustainable development of a mining area and a useful reference for analogous engineering cases.
    Keywords: engineering geology, environmental engineering
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-07
    Description: High-performance, flexible film heaters with carbon nanotube transparent conducting films are easily fabricated by both a rod-coating method and a spraying method. The main conclusion we have reached is that the film demonstrates a heating rate of 6.1°C s –1 at 35 V and sheet resistance as low as 94.7 sq –1 with 72.04% optical transmittance at a wavelength of 550 nm by the spraying method after a series of post-treatment processes with acid and distilled water. Then, we adopt a mathematical method of nonlinear fitting to simulate the collected experimental data and the functions effectively. Furthermore, through analysis of the formula, the correlation between temperature and time is well explained. Therefore, carbon nanotube-based, flexible, transparent heaters exhibit high electrothermal performance and are expected to find different applications, e.g. various functional devices such as heating materials, heatable smart windows or dining tables.
    Keywords: materials science, nanotechnology, chemical physics
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-18
    Description: This paper reports a new route to synthesize calcium carbonate (CaCO 3 )-based nanoscale ionic materials (NIMs) via an in situ formation method to form the CaCO 3 nanoparticles with a polysiloxane quaternary ammonium salt (PQAC) corona (PQAC-CaCO 3 nanoparticles), followed by an ionic exchange reaction to fabricate a poly(ethylene glycol)-tailed sulfonate anion (NPEP) canopy. The chemical compositions and structures of the CaCO 3 -based NIMs synthesized in this work were confirmed by Fourier-transform infrared spectroscopy and solid-state 13 C NMR spectroscopy. Transmission electron microscopic observation indicated that the CaCO 3 -based NIMs presented a rhombohedral shape with a well-defined core-shell structure, and they also obtained an NPEP canopy with a thickness of 4–6 nm. X-ray powder diffraction investigation confirmed that the CaCO 3 inner core had a calcite crystalline structure, whereas the NPEP canopy was amorphous. The NPEP canopy was found to show a characteristic crystallization–melting behaviour in the presence of the ion bonding with PQAC-CaCO 3 nanoparticles according to the characterization of differential scanning calorimetry. Thermogravimetric analysis indicated that the CaCO 3 -based NIMs achieved a high content of NPEP canopy as well as an improvement in thermal stability owing to the ion-bonding effect. Most of all, the CaCO 3 -based NIMs demonstrated a liquid-like behaviour above the critical temperature in the absence of solvent. Moreover, the CaCO 3 -based NIMs also showed a relatively high electrical conductivity with a temperature dependency due to the ionic conductive effect. This work will provide a more feasible and energy-saving methodology for the preparation of CaCO 3 -based NIMs to promote their industrialization and extensive applications.
    Keywords: inorganic chemistry
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-16
    Description: Gold nanoparticles and carbon nanotubes have attracted substantial attention in recent years for their potential applications in photothermal therapy (PTT) as an emerging breakthrough in cancer treatment. Herein, a hybrid nanomaterial of gold nanostars/multiwalled carbon nanotubes (MWCNTs) was synthesized by two-step reduction via the control of several synthetic conditions such as the reducing agent, pH value, concentration and ratio of reagents. The material shows good biocompatibility and high photothermal conversion efficiency, demonstrating its applicability in PTT. The lack of surfactant in the synthesis process made the hybrid nanomaterial cell-friendly, with no effects on viability in vitro . The MWCNT/gold nanostars hybrid nanomaterial presented 12.4% higher photothermal efficiency than gold nanostars alone and showed a 2.4-fold increase over gold nanospheres based on a heating test under 808 nm laser irradiation. Moreover, the MWCNTs/gold nanostars at low concentration (0.32 nM) exhibited remarkably improved photothermal cancer cell-killing efficacy, which may be attributed to the surface plasmon resonance absorption of the gold nanostars and the combined effects of enhanced coupling between the MWCNTs and gold nanostars. Collectively, these results demonstrate that the MWCNTs/gold nanostars developed herein show prominent photothermal value, and thus may serve as a novel photothermal agent for cancer therapy.
    Keywords: biomaterials
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-10-25
    Description: Biochars were produced from long-root Eichhornia crassipes at four temperatures: 200, 300, 400 and 500°C, referred to as LEC200, LEC300, LEC400 and LEC500, respectively. The sorption ability of lead, zinc, copper and cadmium from aqueous solutions by four kinds of biochars was investigated. All the biochars had lower values of CEC and higher values of pH. LEC500 was the best one to bind toxic metals which can be reflected in the results of SEM, BET and elemental analyser. It was also found that alkyl, carboxyl, phosphate and cyano groups in the biochars can play a role in binding metals. In addition, the sorption processes of four metals by the biochars in different metal concentration were all excellently represented by the pseudo-second-order model with all correlation coefficients R 2 〉 0.95. And the sorption processes of four metals in different temperatures could be described satisfactorily by the Langmuir isotherms. According to calculated results by the Langmuir equation, the maximum removal capacities of Pb(II), Zn(II), Cu(II) and Cd(II) at 298 K were 39.09 mg g –1 , 45.40 mg g –1 , 48.20 mg g –1 and 44.04 mg g –1 , respectively. The positive value of the H 0 confirmed the adsorption process was endothermic and the negative value of G 0 confirmed the adsorption process was spontaneous. The sorption capacities were compared with several other lignocellulosic materials which implied the potential of long-root Eichhornia crassipes waste as an economic and excellent biosorbent for eliminating metal ions from contaminated waters.
    Keywords: environmental chemistry
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-02-10
    Description: As a potential endocrine disruptor, clofibric acid (CA) was investigated in this study for its degradation kinetics and pathways in UV/chlorine process. The results showed that CA in both UV photolysis and UV/chlorine processes could be degraded via pseudo-first-order kinetics, while it almost could not be degraded in the dark chlorination process. The observed rate constant ( k obs ) in UV photolysis was 0.0078 min –1, and increased to 0.0107 min –1 combining with 0.1 mM chlorine. The k obs increased to 0.0447 min –1 with further increasing the chlorine dosage from 0.1 to 1.0 mM, and reached a plateau at higher dosage (greater than 1.0 mM). The higher k obs was obtained at acid solution rather than basic solution. Moreover, the calculated contributions of radical species to k obs indicated that the HO• contributed significantly to CA degradation in acidic conditions, while the reactive chlorine species and UV direct photolysis dominated in neutral and basic solution. The degradation of CA was slightly inhibited in the presence of HCO3– (1 ~ 50 mM), barely affected by the presence of Cl – (1 ~ 200 mM) and greatly suppressed by humic acid (0 ~ 5 mg l –1 ). Thirteen main degradation intermediates and three degradation pathways of CA were identified during UV/chlorine process.
    Keywords: photochemistry, environmental chemistry
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...