ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Progress In Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, 185, ISSN: 0079-6611
    Publication Date: 2020-06-05
    Description: The Southern Ocean near the Western Antarctic Peninsula (WAP) is strongly affected by climate change resulting in warmer air temperature, accompanied with reduced sea ice coverage, increased sea water temperature and potential changes in the abundances of two key grazer species Salpa thompsoni (salp) and Euphausia superba (Antarctic krill). While salp abundance is hypothesized to increase, krill abundance is hypothesized to decline with dramatic consequences for the entire food web of the Southern Ocean. A better understanding of the biotic interaction between krill and salps and their population dynamics is thus crucial. However, the life cycle of salps is complicated and barely understood. Therefore, we have developed an individual-based model describing the whole life cycle to better understand the population dynamics of salps and the conditions for blooms. The model has been used to explore if and under what conditions the empirical pattern of large variability in observed salp abundances at the WAP, generated by the long-term data of the US Antarctic Marine Living Resources Program (AMLR) can emerge from a small seeding population. The model reproduced this empirical pattern if daily growth rates of oozoids were higher than previously reported for the WAP (mean growth rate for oozoids ~ 1 mm d−1) and if growth rates of blastozooids were lower (mean growth rate ~ 0.2 mm d−1). The model suggests that a prerequisite for local salp blooms requires a small founding population in early spring. With climate change it has been suggested that more frequent and earlier transport of salps into the WAP or winter survival will occur. Hence, the risk of salp blooms in the WAP is likely to substantially increase. These findings highlight the importance for an improved quantitative understanding of how primary production and the southward advection of salps will be impacted by climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Deep-Sea Research Part II-Topical Studies in Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, (131), pp. 1-6, ISSN: 0967-0645
    Publication Date: 2016-11-07
    Description: This editorial introduces a suite of articles resulting from the second Sea Ice Physics and Ecosystems eXperiment(SIPEX-2) voyage by presenting some background information on the study areaandAntarcticsea-ice conditions,and summarising the key findings from the project.Using the Australian iceb reaker RV Aurora Australis, SIPEX-2 was conducted in the area between 115–125°E and 62–66°S off East Antarctica during September to November 2012. This region had been sampled during two previous experiments,i.e. ARISE in 2003 (Massom etal.,2006a) and SIPEX in 2007(Worbyetal.,2011a). The 2012 voyage combined traditional and newly developed sampling methods with satellite and other data to measure sea-ice physical properties and pro- cesses on large scales,which provided context for bio geochemical and ecological case studies. Thes pecific goals of the SIPEX-2 project were to:(i)measure the spatial variability in sea-ice and snow-cover properties over small-to regional-length scales;(ii) improve understanding of sea-ice kinematic processes;and(iii) advance knowledge of the links between sea-ice physical characteristics,sea-ice biogeochemical cycling and ice-associated food-web dynamics.Our field-based activities were designed to inform modelling approaches and to improve our capability to assess impacts of predicted changes in Antarctic sea ice on Southern Ocean biogeochemical cycles and ecosystem function.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...