ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lin, Yaping; Zhan, Aibin; Hernandez, Marco R; Paolucci, Esteban; MacIsaac, Hugh J; Briski, Elizabeta (2020): Can chlorination of ballast water reduce biological invasions? Journal of Applied Ecology, 57(2), 331-343, https://doi.org/10.1111/1365-2664.13528
    Publication Date: 2023-01-13
    Description: 1. Ballast water has been identified as a leading vector for introduction of non-indigenous species (NIS). Recently, the International Maritime Organization (IMO) implemented management standards – D-2 – where all large, commercial ships trading internationally are required to adopt an approved treatment system using technologies such as ultraviolet radiation or chlorination. However, current management regulations are based only on the total abundance of viable taxa transported (i.e., total propagule pressure), largely ignoring species richness (i.e., colonization pressure). 2. To determine the efficacy of chlorine treatment in reducing invasion risks and changes in transported biological communities inside ballast tanks, we used DNA metabarcoding-based approaches to estimate colonization pressure (here, the number of species/Operational Taxonomic Units (OTUs) introduced) and relative propagule pressure (relative abundance of each species/OTU) of zooplankton communities in control and chlorine treated tanks during four transatlantic voyages. 3. Our study demonstrated that transport itself did not significantly reduce colonization pressure of zooplankton species, nor did chlorine treatment. Chlorine treatment altered community structure by reducing relative propagule pressure of some taxa such as Mollusca and Rotifera, while increasing relative propagule pressure of some Oligohymenophorea and Copepoda species. 4. Synthesis and applications. Chlorine treatment may not reduce invasion risks as much as previously thought. Reduction in total propagule pressure does not mean reduction in abundance of all species equally. While some taxa might experience drastically reduced abundance, others might not change at all or increase due to hatching from dormant stages initiated by chlorine exposure. Therefore, management strategies should consider changes in total propagule pressure and colonization pressure when forecasting risk of new invasions. We therefore recommend adopting new approaches, such as DNA metabarcoding-based methods, to assess the whole biodiversity discharged from ballast water. As species responses to chlorine treatment are variable and affected by concentration, we also recommend a combination of different technologies to reduce introduction risks of aquatic organisms.
    Type: Dataset
    Format: application/zip, 233.9 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Briski, Elizabeta; Ghabooli, Sara; Bailey, Sarah A; MacIsaac, Hugh J (2016): Are genetic databases sufficiently populated to detect non-indigenous species? Biological Invasions, 18(7), 1911-1922, https://doi.org/10.1007/s10530-016-1134-1
    Publication Date: 2023-01-13
    Description: Correct species identifications are of tremendous importance for invasion ecology, as mistakes could lead to misdirecting limited resources against harmless species or inaction against problematic ones. DNA barcoding is becoming a promising and reliable tool for species identifications, however the efficacy of such molecular taxonomy depends on gene region(s) that provide a unique sequence to differentiate among species and on availability of reference sequences in existing genetic databases. Here, we assembled a list of aquatic and terrestrial non-indigenous species (NIS) and checked two leading genetic databases for corresponding sequences of six genome regions used for DNA barcoding. The genetic databases were checked in 2010, 2012, and 2016. All four aquatic kingdoms (Animalia, Chromista, Plantae and Protozoa) were initially equally represented in the genetic databases, with 64, 65, 69, and 61% of NIS included, respectively. Sequences for terrestrial NIS were present at rates of 58 and 78% for Animalia and Plantae, respectively. Six years later, the number of sequences for aquatic NIS increased to 75, 75, 74, and 63% respectively, while those for terrestrial NIS increased to 74 and 88% respectively. Genetic databases are marginally better populated with sequences of terrestrial NIS of plants compared to aquatic NIS and terrestrial NIS of animals. The rate at which sequences are added to databases is not equal among taxa. Though some groups of NIS are not detectable at all based on available data - mostly aquatic ones - encouragingly, current availability of sequences of taxa with environmental and/or economic impact is relatively good and continues to increase with time.
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 811.6 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-05
    Description: A comprehensive dataset of non-native species (NNS) was assembled by combining the SInAS database of alien species occurrences (Seebens, 2021) with several other publicly available databases and NNS lists to examine NNS diversity globally (Bailey et al., 2020; Campbell et al., 2016; Carlton & Eldredge, 2009; Casties et al., 2016; Eldredge & Carlton, 2015; Hewitt et al., 2002, 2004; Lambert, 2002; Meyer, 2000; NEMESIS, 2017, 2020; Paulay et al., 2002; Richardson et al., 2020; Schwindt et al., 2020; Sturtevant et al., 2019; U.S. Geological Survey, 2017; Wonham & Carlton, 2005) to examine NNS diversity globally. The SInAS_AlienSpeciesDB_2.4.1 file was used as the base file for our dataset. Species without assignment of invaded country/region were removed from the dataset. Then, species assigned only as CASUAL and ABSENT in the columns degreeOfEstablishment (N) and occurrenceStatus (L), respectively, were also removed due to their undetermined non-native establishment status in those particular regions (Groom et al., 2019). Following, species from other publicly available databases and NNS lists that had not been listed for particular region/s in the SInAS database were added to the file. The species that were both native and NNS within a continent were retained in the dataset. Accordingly, the dataset consisted 36 822 species established outside of their native regions, out of which 36 326 came from Seebens (2021) and 496 species from other databases and NNS lists. Binominal scientific names, phylum, class, and family levels were assigned to each species based on the SInAS_AlienSpeciesDB_2.4.1_FullTaxaList file that was originally determined following Global Biodiversity Information Facility (GBIF). When a species was not automatically assigned to binominal scientific name and/or taxonomic level, an additional manual search of GBIF, World Register of Marine Species (WoRMS) and a general internet search engine was conducted in June and July 2022, and September 2023. Also, to examine NNS diversity among different habitats (i.e., terrestrial, freshwater, and marine), we assigned one or more habitats for each species based on the Step2_StandardTerms_GRIIS file; habitat data in the Step2_StandardTerms_GRIIS file originated from the Global Register of Introduced and Invasive Species (GRIIS). Again, if habitat(s) was(were) not automatically assigned to a species, an additional manual search of WoRMS and a general internet search engine was conducted from July to September 2022. We emphasize that due to the great number of species in our dataset and changing information availability over time, there is a possibility that we did not list all potential habitats for all species. Brackish habitats were defined as marine based on the Venice System (1958). Regions were assigned based on the geographic continental definitions (i.e., North America, South America, Europe, Africa, Asia, and Australia), with Pacific islands as a separate region due to their unclear/undefined continental affiliations (National Geographic Society, 2022). Finally, global estimated biodiversity (i.e., numbers of species per taxonomic group) of each particular phylum, class, and family was obtained from the GBIF in October 2022 (GBIF, 2022).
    Keywords: Area/locality; Class; Code; Family; Habitat; Identification; Phylum; Reference/source; Scientific name; Taxon/taxa
    Type: Dataset
    Format: text/tab-separated-values, 664480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...