ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (46)
  • The Royal Society  (1)
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pälike, Heiko; Norris, Richard D; Herrle, Jens O; Wilson, Paul A; Coxall, Helen; Lear, Caroline H; Shackleton, Nicholas J; Tripati, Aradhna K; Wade, Bridget S (2006): The Heartbeat of the Oligocene Climate System. Science, 314(5807), 1894-1898, https://doi.org/10.1126/science.1133822
    Publication Date: 2024-04-25
    Description: A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced "heartbeat" in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.
    Keywords: 199-1218; COMPCORE; Composite Core; Joides Resolution; Leg199; North Pacific Ocean; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wade, Bridget S; Berggren, William A; Olsson, Richard K (2007): The biostratigraphy and paleobiology of Oligocene planktonic foraminifera from the equatorial Pacific Ocean (ODP Site 1218). Marine Micropaleontology, 62(3), 167-179, https://doi.org/10.1016/j.marmicro.2006.08.005
    Publication Date: 2024-04-25
    Description: Planktonic foraminifera from a continuous Oligocene succession with clear magnetochronology and sediment cycles at Ocean Drilling Program Site 1218 (equatorial Pacific Ocean) were studied in the interval from 27 to 30 Ma. Paragloborotalia taxa are common and we examined their size, relative abundance, and stable isotopes. Multispecies stable isotope data indicate the depth habitats of Oligocene planktonic foraminifera and suggest that “Globoquadrina” venezuelana and Dentoglobigerina globularis were probably mixed-layer dwellers, with paragloborotaliids recording heavier delta18O signatures consistent with a thermocline habitat. Cyclic variations in the abundance of Paragloborotalia match eccentricity (100 kyr) variations in percent carbonate and delta13C, suggesting orbitally forced upwelling in the equatorial Pacific Ocean and that Paragloborotalia were responding directly to changes in surface water productivity. The high-resolution biostratigraphy calibrated to the magnetochronology constrains the extinction of Paragloborotalia opima which marks the top of Planktonic Foraminifera Biozone O5 (P21b) at 27.456 Ma. The highest occurrence of P. opima is associated with a 50% size decrease in Paragloborotalia pseudocontinuosa taxa within Chron 9n. In addition, we find the extinction of Chiloguembelina cubensis is consistent with other deep-sea sections within Chron 10n at 28.426 Ma marking the O4/O5 (P21a/P21b) boundary.
    Keywords: 199-1218; COMPCORE; Composite Core; Joides Resolution; Leg199; North Pacific Ocean; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wade, Bridget S (2004): Planktonic foraminiferal biostratigraphy and mechanisms in the extinction of Morozovella in the late middle Eocene. Marine Micropaleontology, 51(1-2), 23-38, https://doi.org/10.1016/j.marmicro.2003.09.001
    Publication Date: 2024-04-25
    Description: The muricate planktonic foraminiferal genera Morozovella and Acarinina were abundant and diverse during the upper Palaeocene to middle Eocene and dominated the tropical and subtropical assemblages. A significant biotic turnover in planktonic foraminifera occurred in the latest middle Eocene with a notable reduction in the acarininid lineage and the extinction of the morozovellids. These genera are extensively employed as palaeoclimatic and biostratigraphic markers and, therefore, this turnover episode is an important event in the record of the Cenozoic planktonic foraminifera. Sediments from the western North Atlantic (Ocean Drilling Program Site 1052) were examined in order to investigate these extinction events, in terms of both timing and mechanisms. Biostratigraphic events of the middle and late Eocene have been examined with a sampling resoluti on of approximately 3 kyr. These have been calibrated to the magneto- and astrochronology to accurately define the timing of key biostratigraphic events, particularly the extinction of Morozovella spinulosa which is a distinct biomarker for late middle Eocene sediments. High-resolution biostratigraphy reveals that the extinctions in the muricate group occurred in a stepwise form. The large acarininids (Acarinina praetopilensis) terminate 10 kyr prior to the extinction of M. spinulosa and small acarininids (Acarinina medizzai and Acarinina echinata) continue into the upper Eocene. High-resolution stable isotope analyses have been conducted on planktonic and benthic foraminifera from the western North Atlantic to reconstruct sea surface temperatures (SSTs) and deep water temperatures and the structure of the water column around this major biotic turnover. Whilst the extinctions of M. spinulosa and A. praetopilensis occur during a long-term cooling trend, the biotic turnover in the muricate group does not appear to be related to significant climatic change. Sea surface temperatures decrease slowly prior to the extinction events, and there is no evidence for a large-temperature shift associated with the faunal changes. The turnover event was therefore probably related to the increased surface water productivity and the deterioration of photosymbiotic partnerships with algae.
    Keywords: 171-1052; Blake Nose, North Atlantic Ocean; COMPCORE; Composite Core; Joides Resolution; Leg171B; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Katz, Miriam E; Miller, Kenneth G; Wright, James D; Wade, Bridget S; Browning, James V; Cramer, Benjamin S; Rosenthal, Yair (2008): Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geoscience, 1, 329-334, https://doi.org/10.1038/ngeo179
    Publication Date: 2024-04-25
    Description: In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable 'icehouse' climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene-Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific)) d18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were ~25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.
    Keywords: 199-1218; 73-522_Site; Alabama, Alabama, U.S.A., North America; COMPCORE; Composite Core; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Joides Resolution; Leg199; Leg73; North Pacific Ocean; Ocean Drilling Program; ODP; South Atlantic/PLATEAU; SSQ; St-Stephens-Quarry
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Miller, Kenneth G; Browning, James V; Aubry, Marie-Pierre; Wade, Bridget S; Katz, Miriam E; Kulpecz, Andrew A; Wright, James D (2008): Eocene-Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama. Geological Society of America Bulletin, 120(1/2), 34-53, https://doi.org/10.1130/B26105.1
    Publication Date: 2024-04-25
    Description: We integrate upper Eocene-lower Oligocene lithostratigraphic, magnetostratigraphic, biostratigraphic, stable isotopic, benthic foraminiferal faunal, downhole log, and sequence stratigraphic studies from the Alabama St. Stephens Quarry (SSQ) core hole, linking global ice volume, sea level, and temperature changes through the greenhouse to icehouse transition of the Cenozoic. We show that the SSQ succession is dissected by hiatuses associated with sequence boundaries. Three previously reported sequence boundaries are well dated here: North Twistwood Creek-Cocoa (35.4-35.9 Ma), Mint Spring-Red Bluff (33.0 Ma), and Bucatunna-Chickasawhay (the mid-Oligocene fall, ca. 30.2 Ma). In addition, we document three previously undetected or controversial sequences: mid-Pachuta (33.9-35.0 Ma), Shubuta-Bumpnose (lowermost Oligocene, ca. 33.6 Ma), and Byram-Glendon (30.5-31.7 Ma). An ~0.9 per mil d18O increase in the SSQ core hole is correlated to the global earliest Oligocene (Oi1) event using magnetobiostratigraphy; this increase is associated with the Shubuta-Bumpnose contact, an erosional surface, and a biofacies shift in the core hole, providing a first-order correlation between ice growth and a sequence boundary that indicates a sea-level fall. The d18O increase is associated with a eustatic fall of ~55 m, indicating that ~0.4 per mil of the increase at Oi1 time was due to temperature. Maximum d18O values of Oi1 occur above the sequence boundary, requiring that deposition resumed during the lowest eustatic lowstand. A precursor d18O increase of 0.5 per mil (33.8 Ma, midchron C13r) at SSQ correlates with a 0.5 per mil increase in the deep Pacific Ocean; the lack of evidence for a sea-level change with the precursor suggests that this was primarily a cooling event, not an ice-volume event. Eocene-Oligocene shelf water temperatures of ~17-19 °C at SSQ are similar to modern values for 100 m water depth in this region. Our study establishes the relationships among ice volume, d18O, and sequences: a latest Eocene cooling event was followed by an earliest Oligocene ice volume and cooling event that lowered sea level and formed a sequence boundary during the early stages of eustatic fall.
    Keywords: Alabama, Alabama, U.S.A., North America; DRILL; Drilling/drill rig; SSQ; St-Stephens-Quarry
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Katz, Miriam E; Cramer, Benjamin S; Toggweiler, J Robbie; Esmay, Gar; Liu, Chengji; Miller, Kenneth G; Rosenthal, Yair; Wade, Bridget S; Wright, James D (2011): Impact of Antarctic Circumpolar Current development on late Paleogene ocean structure. Science, 332(6033), 1076-7079, https://doi.org/10.1126/science.1202122
    Publication Date: 2024-04-25
    Description: Global cooling and the development of continental-scale Antarctic glaciation occurred in the late middle Eocene to early Oligocene (~38 to 28 million years ago), accompanied by deep-ocean reorganization attributed to gradual Antarctic Circumpolar Current (ACC) development. Our benthic foraminiferal stable isotope comparisons show that a large d13C offset developed between mid-depth (~600 meters) and deep (〉1000 meters) western North Atlantic waters in the early Oligocene, indicating the development of intermediate-depth d13C and O2 minima closely linked in the modern ocean to northward incursion of Antarctic Intermediate Water. At the same time, the ocean's coldest waters became restricted to south of the ACC, probably forming a bottom-ocean layer, as in the modern ocean. We show that the modern four-layer ocean structure (surface, intermediate, deep, and bottom waters) developed during the early Oligocene as a consequence of the ACC.
    Keywords: 171-1053; 171-1053A; ASP-5; Carolina Slope, North Atlantic Ocean; COMPCORE; Composite Core; DRILL; Drilling/drill rig; Joides Resolution; Leg171B; North Atlantic; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kamikuri, Shin-Ichi; Wade, Bridget S (2012): Radiolarian magnetobiochronology and faunal turnover across the middle/late Eocene boundary at Ocean Drilling Program Site 1052 in the western North Atlantic Ocean. Marine Micropaleontology, 88-89, 41-53, https://doi.org/10.1016/j.marmicro.2012.03.001
    Publication Date: 2024-04-25
    Description: Quantitative radiolarian assemblage analysis has been conducted on middle and upper Eocene sediments (Zones RP16 to RP18) from Ocean Drilling Program Site 1052 in order to establish the radiolarian magnetobiochronology and determine the nature of the faunal turnover across the middle/late Eocene boundary in the western North Atlantic Ocean. We recognize and calibrate forty-five radiolarian bioevents to the magneto- and cyclo-stratigraphy from Site 1052 to enhance the biochronologic resolution for the middle and late Eocene. Our data is compared to sites in the equatorial Pacific (Leg 199) to access the diachrony of biostratigraphic events. Eleven bioevents are good biostratigraphic markers for tropical/subtropical locations (south of 30°N). The primary markers (lowest occurrences of Cryptocarpium azyx and Calocyclas bandyca) which are tropical zonal boundary markers for Zones RP17 and RP18 provide robust biohorizons for correlation and age determination from the low to middle latitudes and between the Atlantic and Pacific Oceans. Some other radiolarian bioevents are highly diachronous (〈1 million years) between oceanic basins. A significant faunal turnover of radiolarians is recognized within Chron C17n.3n (37.7 Ma) where 13 radiolarian species disappear rapidly in less than 100 kyr and 4 new species originate. The radiolarian faunal turnover coincides with a major extinction in planktonic foraminifera. We name the turnover phase, the Middle/Late Eocene Turnover (MLET). Assemblage analysis reveals the MLET to be associated with a decrease in low-mid latitude taxa and increase in cosmopolitan taxa and radiolarian accumulation rates. The MLET might be related to increased biological productivity rather than to surface-water cooling.
    Keywords: 171-1052A; Blake Nose, North Atlantic Ocean; DRILL; Drilling/drill rig; Joides Resolution; Leg171B; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Beddow, Helen M; Liebrand, Diederik; Sluijs, Appy; Wade, Bridget S; Lourens, Lucas Joost (2016): Global change across the Oligocene-Miocene transition: High-resolution stable isotope records from IODP Site U1334 (equatorial Pacific Ocean). Paleoceanography, 31(1), 81-97, https://doi.org/10.1002/2015PA002820
    Publication Date: 2024-04-25
    Description: The Oligocene-Miocene transition (OMT) (~23 Ma) is interpreted as a transient global cooling event, associated with a large-scale Antarctic ice sheet expansion. Here we present a 2.23 Myr long high-resolution (~3 kyr) benthic foraminiferal oxygen and carbon isotope (d18O and d13C) record from Integrated Ocean Drilling Program Site U1334 (eastern equatorial Pacific Ocean), covering the interval from 21.91 to 24.14 Ma. To date, five other high-resolution benthic foraminiferal stable isotope stratigraphies across this time interval have been published, showing a ~1 per mil increase in benthic foraminiferal d18O across the OMT. However, these records are still few and spatially limited and no clear understanding exists of the global versus local imprints. We show that trends and the amplitudes of change are similar at Site U1334 as in other high-resolution stable isotope records, suggesting that these represent global deep water signals. We create a benthic foraminiferal stable isotope stack across the OMT by combining Site U1334 with records from ODP Sites 926, 929, 1090, 1264, and 1218 to best approximate the global signal. We find that isotopic gradients between sites indicate interbasinal and intrabasinal variabilities in deep water masses and, in particular, note an offset between the equatorial Atlantic and the equatorial Pacific, suggesting that a distinct temperature gradient was present during the OMT between these deep water masses at low latitudes. A convergence in the d18O values between infaunal and epifaunal species occurs between 22.8 and 23.2 Ma, associated with the maximum d18O excursion at the OMT, suggesting climatic changes associated with the OMT had an effect on interspecies offsets of benthic foraminifera. Our data indicate a maximum glacioeustatic sea level change of ~50 m across the OMT.
    Keywords: 320-U1334; 320-U1334A; 320-U1334B; 320-U1334C; COMPCORE; Composite Core; DRILL; Drilling/drill rig; Exp320; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Pacific Equatorial Age Transect I
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-25
    Keywords: -; 320-U1334A; 320-U1334B; 320-U1334C; Cibicidoides mundulus, δ13C; Cibicidoides mundulus, δ18O; Corrected; Depth, composite revised; Depth, composite revised, adjusted; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Event label; Exp320; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Isotope ratio mass spectrometry; Joides Resolution; Oridorsalis umbonatus, δ13C; Oridorsalis umbonatus, δ18O; Pacific Equatorial Age Transect I; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 4906 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-25
    Keywords: 171-1051B; Blake Nose, North Atlantic Ocean; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Joides Resolution; Leg171B; Mass spectrometer Finnigan MAT 252; Nuttallides truempyi, δ13C; Nuttallides truempyi, δ18O; Ocean Drilling Program; ODP; Sample code/label; Size
    Type: Dataset
    Format: text/tab-separated-values, 751 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...