ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-08-05
    Description: It has been claimed that the standard model of cosmology (ΛCDM) cannot easily account for a number of observations on relatively small scales, motivating extensions to the standard model. Here, we introduce a new suite of cosmological simulations that systematically explores three plausible extensions: warm dark matter, self-interacting dark matter, and a running of the scalar spectral index of density fluctuations. Current observational constraints are used to specify the additional parameters that come with these extensions. We examine a large range of observable metrics on small scales, including the halo mass function, density, and circular velocity profiles, the abundance of satellite subhaloes, and halo concentrations. For any given metric, significant degeneracies can be present between the extensions. In detail, however, the different extensions have quantitatively distinct mass and radial dependencies, suggesting that a multiprobe approach over a range of scales can be used to break the degeneracies. We also demonstrate that the relative effects on the radial density profiles in the different extensions (compared to the standard model) are converged down to significantly smaller radii than are the absolute profiles. We compare the derived cosmological trends with the impact of baryonic physics using the EAGLE and ARTEMIS simulations. Significant degeneracies are also present between baryonic physics and cosmological variations (with both having similar magnitude effects on some observables). Given the inherent uncertainties both in the modelling of galaxy formation physics and extensions to ΛCDM, a systematic and simultaneous exploration of both is strongly warranted.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-17
    Description: We introduce the Assembly of high-ResoluTion Eagle-simulations of MIlky Way-type galaxieS (artemis) simulations, a new set of 42 zoomed-in, high-resolution (baryon particle mass of $approx 2imes 10^4 , { m M}_{odot }, h^{-1}$), hydrodynamical simulations of galaxies residing in haloes of Milky Way mass, simulated with the eagle galaxy formation code with re-calibrated stellar feedback. In this study, we analyse the structure of stellar haloes, specifically the mass density, surface brightness, metallicity, colour, and age radial profiles, finding generally very good agreement with recent observations of local galaxies. The stellar density profiles are well fitted by broken power laws, with inner slopes of ≈−3, outer slopes of ≈−4, and break radii that are typically ≈20–40 kpc. The break radii generally mark the transition between in situ formation and accretion-driven formation of the halo. The metallicity, colour, and age profiles show mild large-scale gradients, particularly when spherically averaged or viewed along the major axes. Along the minor axes, however, the profiles are nearly flat, in agreement with observations. Overall, the structural properties can be understood by two factors: that in situ stars dominate the inner regions and that they reside in a spatially flattened distribution that is aligned with the disc. Observations targeting both the major and minor axes of galaxies are thus required to obtain a complete picture of stellar haloes.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...