ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-26
    Description: Devastating floods due to Atlantic hurricanes are relatively rare events. However, the frequency of the most intense storms is likely to increase with rises in sea surface temperatures. Geoengineering by stratospheric sulfate aerosol injection cools the tropics relative to the polar regions, including the hurricane Main Development Region in the Atlantic, suggesting that geoengineering may mitigate hurricanes. We examine this hypothesis using eight earth system model simulations of climate under the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those temperature increases in the RCP4.5. However, sulfate injection would have to double (to nearly 10 teragrams of SO2 per year) between 2020 and 2070 to balance the RCP4.5, approximately the equivalent of a 1991 Pinatubo eruption every 2 y, with consequent implications for stratospheric ozone. We project changes in storm frequencies using a temperature-dependent generalized extreme value statistical model calibrated by historical storm surges and observed temperatures since 1923. The number of storm surge events as big as the one caused by the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this reduction is only marginally statistically significant. Nevertheless, when sea level rise differences in 2070 between the RCP4.5 and geoengineering are factored into coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5-y events and about halved for 50-y surges.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-07
    Description: The last decade has seen broad exploratory research into stratospheric aerosol (SA) geoengineering, motivated by concern that reducing greenhouse gas emissions may be insufficient to avoid significant impacts from climate change. Based on this research, it is plausible that a limited deployment of SA geoengineering, provided it is used in addition to cutting emissions, could reduce many climate risks for most people. However, “plausible” is an insufficient basis on which to support future decisions. Developing the necessary knowledge requires a transition toward mission-driven research that has the explicit goal of supporting informed decisions. We highlight two important observations that follow from considering such a comprehensive, prioritized natural-science research effort. First, while field experiments may eventually be needed to reduce some of the uncertainties, we expect that the next phase of research will continue to be primarily model-based, with one outcome being to assess and prioritize which uncertainties need to be reduced (and, as a corollary, which field experiments can reduce those uncertainties). Second, we anticipate a clear separation in scale and character between small-scale experimental research to resolve specific process uncertainties and global-scale activities. We argue that the latter, even if the radiative forcing is negligible, should more appropriately be considered after a decision regarding whether and how to deploy SA geoengineering, rather than within the scope of “research” activities.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...