ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (6)
Collection
Years
  • 1
    Publication Date: 2020-06-05
    Description: This paper presents the investigation of a local heating system consisting of three heating mats incorporated within a sedentary workplace. Thermal comfort and individual power settings for the heating mats were studied in experiments with 41 human subjects. Experiments were performed in a climate chamber at two operative temperatures: 16 and 18 °C. Results showed that local heating systems improved occupants’ comfort and were able to create acceptable thermal conditions under both temperatures. The power settings identified were used to study the applicability of heating mats in an industrial hall. Multi-variant analysis of energy consumption for heating was carried out using an ESP-r (Environmental Systems Performance–Research) simulation program. The analysis results demonstrate that in some cases, the installation of local heating mats in industrial halls may reduce energy usage compared to having to heat the entire hall. However, the benefits depend on numerous parameters. Local heating is most advantageous when installed in halls with a small number of workstations, small internal heat gains, and low-efficiency central heating systems. In reality for the satisfactory implementation of local heating systems for a particular application, it is advised to perform analysis for the specific local conditions. In order to improve the effectiveness of local heating systems, an advanced heating control strategy should be considered.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-29
    Description: A series of cerium-based UiO-66 was obtained via hydrothermal and sonochemical methods, using the same quantities of reagents (cerium ammonium nitrate (CAN), terephthalic acid (H2BDC)) and solvents) in each synthesis. The impact of synthesis method and metal to linker ratio on the structural and textural properties of obtained UiO-66(Ce), as well as their composition in terms of Ce4+/Ce3+ ratio, structure defects resulting from missing linker, and CO2 adsorption capacity was discussed. By using typical characterization techniques and methods, such as XRD, N2 and CO2 sorption, TGA, XPS, and SEM, it was shown that the agitation of reacting mixture during synthesis (caused by stirring or ultrasounds) allows to obtain structures that have more developed surfaces and fewer linker defects than when MOF was obtained in static conditions. The specific surface area was found to be of minor importance in the context of CO2 adsorption than the contribution of Ce3+ ions that were associated with the concentration of linker defects.
    Electronic ISSN: 2073-4344
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-29
    Description: Diagnostics of natural ventilation in buildings is problematic, as the airflow rate changes considerably over time. One constant average airflow is usually assumed when calculating energy demand for a building, however, such a simplification could be fraught with considerable error. The paper describes a comprehensive methodology for the diagnostics of a natural ventilation system in a building and its practical application. Based on in situ measurements and simulations in two existing buildings (dwelling house and school) in Poland, the real values of the ventilating airflows were analyzed and resulting heat demand was compared with the design values. The pros and cons of various methods for evaluation of natural ventilation are discussed. The real airflow was determined by measurements in a ventilation grille or by a tracer gas concentration decay method. The airtightness of the buildings’ envelope was evaluated based on the fan pressurization test. The last stage entailed computer simulations of air exchange in buildings using CONTAM software. The multizone models of the buildings were calibrated and verified with existing measured data. Measured airflow in a multifamily house was small and substantially deviated from the Polish standard. In case of a school, the air flow rate amounted to an average of 10% of the required value. Calculation of the heat demand for ventilation based on the standard value of the airflow led to a considerable overestimation of this value in relation to the real consumption. In the analyzed cases, the difference was 40% for the school and 30% for the residential building.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-10
    Description: Works of art are sensitive to environmental factors—mainly temperature and relative humidity—which, when stable, are generally recommended as ideal protection conditions, but in historical museum buildings, the required conditions are difficult to maintain, due to a lack of adequate heating, ventilation and air-conditioning systems. The paper presents the analysis of one-year measurements of temperature and relative humidity in three different museums in Poland. The aim of the research was to identify the risk to museum collections, due to unbalanced moisture loads and unstable indoor air temperatures, as well as to identify possible causes of fluctuations in these parameters. This article focuses on assessing the impact of variable external and internal loads on the hygrothermal parameters of indoor air. The profile of internal hygrothermal loads in exhibition halls varied over time, which resulted in a temporary variation of the indoor environmental parameters. The lack of appropriate systems, shaping the microclimate in the analyzed museums, and the lack of automatic control in existing devices did not allow to maintain the temperature and relative humidity within appropriate limits. In the museums, the maximum indoor temperature values were higher than those recommended in the requirements. Relative humidity values in all museums exceeded the recommended range both above and below.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-16
    Description: Ventilation of an indoor swimming pool is a very energy consuming process. This is a result of, among other things the required high value of the ventilation air volume flow rate, calculated on the basis of the moisture gains in the facility. The total energy consumption consists of the heat required to heat this air and the electricity needed to transport it. It is possible to reduce the ventilation air volume flow rate by assuming the correct value of specific humidity of the supply and indoor air, but then a deterioration of thermal-moisture conditions in the building can be expected. The aim of this paper was to examine how the reduction of the supply air volume flow rate affects the energy consumption for indoor swimming pool ventilation. It was also checked how this consumption can be reduced by using two-stage heat recovery in the air handling unit. Multi-variant simulations of energy consumption for indoor swimming pool ventilation were carried out using the IDA ICE software for day and night operation of the swimming pool throughout the year. The results of the research proved that reduction of the supply air volume flow rate resulted in the lower energy expenditure on ventilation. The variant with additional local air supply to the lifeguard zone was also analysed, which caused only a slight increase in energy demand for ventilation.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-20
    Description: The energy consumption of purely convective (i.e., various air volume (VAV) mixing ventilation) and combined radiant and convective HVAC systems (chilled ceiling combined with mixing ventilation—CCMV or personalized ventilation—CCPV) was investigated with multi-variant simulations carried out the IDA Indoor Climate and Energy software. We analyzed three different climates: temperate, hot and humid, and hot and dry. Our results show that the use of CCPV substantially reduced energy consumption compared to the conventional VAV system in hot climates. We also show that increasing the room temperature to 28 °C is an effective energy-saving strategy that can reduce consumption by as much as 40%. In the temperate climate, the VAV system was preferable because it used less energy as it benefited from outdoor air free-cooling. The control strategy of the supply temperature of personalized air had an impact on the energy demand of the HVAC system. The most efficient control strategy of the CCPV system was to increase the room temperature and keep the supply air temperature in the range of 20–22 °C. This approach consumed less energy than VAV or CCMV, and also improved the relative humidity in the hot climate.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...