ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-16
    Description: Aerosol and meteorological remote sensing data could be used to assess the distribution of urban and regional fine particulate matter (PM2.5), especially in locations where there are few or no ground-based observations, such as Latin America. The objective of this study is to evaluate the ability of Modern-Era Retrospective Analysis for Research and Application, version 2 (MERRA-2) aerosol components to represent PM2.5 ground concentrations and to develop and validate an ensemble neural network (ENN) model that uses MERRA-2 aerosol and meteorology products to estimate the monthly average of PM2.5 ground concentrations in the Monterrey Metropolitan Area (MMA), which is the main urban area in Northeastern Mexico (NEM). The project involves the application of the ENN model to a regional domain that includes not only the MMA but also other municipalities in NEM in the period from January 2010 to December 2014. Aerosol optical depth (AOD), temperature, relative humidity, dust PM2.5, sea salt PM2.5, black carbon (BC), organic carbon (OC), and sulfate (SO42−) reanalysis data were identified as factors that significantly influenced PM2.5 concentrations. The ENN estimated a PM2.5 monthly mean of 25.62 μg m−3 during the entire period. The results of the comparison between the ENN and ground measurements were as follows: correlation coefficient R ~ 0.90; root mean square error = 1.81 μg m−3; mean absolute error = 1.31 μg m−3. Overall, the PM2.5 levels were higher in winter and spring. The highest PM2.5 levels were located in the MMA, which is the major source of air pollution throughout this area. The estimated data indicated that PM2.5 was not distributed uniformly throughout the region but varied both spatially and temporally. These results led to the conclusion that the magnitude of air pollution varies among seasons and regions, and it is correlated with meteorological factors. The methodology developed in this study could be used to identify new monitoring sites and address information gaps.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-20
    Description: Using a combined Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) mid-visible aerosol optical depth (AOD) product at 0.1 × 0.1-degree spatial resolution and collocated surface PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) monitors, we provide a global five-year (2015–2019) assessment of the spatial and seasonal AOD–PM2.5 relationships of slope, intercepts, and correlation coefficients. Only data from ground monitors accessible through an open air-quality portal that are available to the worldwide community for air quality research and decision making are used in this study. These statistics that are reported 1 × 1-degree resolution are important since satellite AOD is often used in conjunction with spatially limited surface PM2.5 monitors to estimate global distributions of surface particulate matter concentrations. Results indicate that more than 3000 ground monitors are now available for PM2.5 studies. While there is a large spread in correlation coefficients between AOD and PM2.5, globally, averaged over all seasons, the correlation coefficient is 0.55 with a unit AOD producing 54 μgm−3 of PM2.5 (Slope) with an intercept of 8 μgm−3. While the number of surface PM2.5 measurements has increased by a factor of 10 over the last decade, a concerted effort is still needed to continue to increase these monitors in areas that have no surface monitors, especially in large population centers that will further leverage the strengths of satellite data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-07
    Description: The Dark Target aerosol algorithm was developed to exploit the information content available from the observations of Moderate-Resolution Imaging Spectroradiometers (MODIS), to better characterize the global aerosol system. The algorithm is based on measurements of the light scattered by aerosols toward a space-borne sensor against the backdrop of relatively dark Earth scenes, thus giving rise to the name “Dark Target”. Development required nearly a decade of research that included application of MODIS airborne simulators to provide test beds for proto-algorithms and analysis of existing data to form realistic assumptions to constrain surface reflectance and aerosol optical properties. This research in itself played a significant role in expanding our understanding of aerosol properties, even before Terra MODIS launch. Contributing to that understanding were the observations and retrievals of the growing Aerosol Robotic Network (AERONET) of sun-sky radiometers, which has walked hand-in-hand with MODIS and the development of other aerosol algorithms, providing validation of the satellite-retrieved products after launch. The MODIS Dark Target products prompted advances in Earth science and applications across subdisciplines such as climate, transport of aerosols, air quality, and data assimilation systems. Then, as the Terra and Aqua MODIS sensors aged, the challenge was to monitor the effects of calibration drifts on the aerosol products and to differentiate physical trends in the aerosol system from artefacts introduced by instrument characterization. Our intention is to continue to adapt and apply the well-vetted Dark Target algorithms to new instruments, including both polar-orbiting and geosynchronous sensors. The goal is to produce an uninterrupted time series of an aerosol climate data record that begins at the dawn of the 21st century and continues indefinitely into the future.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-02
    Description: The state-of-art satellite observations of atmospheric aerosols over the last two decades from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instruments have been extensively utilized in climate change and air quality research and applications. The operational algorithms now produce Level 2 aerosol data at varying spatial resolutions (1, 3, and 10 km) and Level 3 data at 1 degree. The local and global applications have benefited from the coarse resolution gridded data sets (i.e., Level 3, 1 degree), as it is easier to use since data volume is low, and several online and offline tools are readily available to access and analyze the data with minimal computing resources. At the same time, researchers who require data at much finer spatial scales have to go through a challenging process of obtaining, processing, and analyzing larger volumes of data sets that require high-end computing resources and coding skills. Therefore, we created a high spatial resolution (high-resolution gridded (HRG), 0.1 × 0.1 degree) daily and monthly aerosol optical depth (AOD) product by combining two MODIS operational algorithms, namely Deep Blue (DB) and Dark Target (DT). The new HRG AODs meet the accuracy requirements of Level 2 AOD data and provide either the same or more spatial coverage on daily and monthly scales. The data sets are provided in daily and monthly files through open an Ftp server with python scripts to read and map the data. The reduced data volume with an easy to use format and tools to access the data will encourage more users to utilize the data for research and applications.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-04
    Description: We show that training activities conducted through the National Aeronautics and Space Administration (NASA)’s Applied Remote-Sensing Training (ARSET) program led to a significant increase in remote-sensing data use for decision-making. Our findings are based on survey data collected from 1041 ARSET participants from 117 countries who attended ARSET trainings between 2013 and 2016. To assess the impact of the ARSET program, we analyzed changes in three metrics. Results show that 83% of all respondents increased their knowledge of remote-sensing data products at least moderately, 79% increased their ability to access data, and 73% increased their ability to make decisions. We also examined how respondents are using remote-sensing data across 40 specific work tasks ranging from research to decision support applications. More than 50% of respondents reported an increase in data use for all except two of the tasks. ARSET will use these findings, together with participant data on future training needs, to set future directions for the program.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-08-06
    Description: The use of statistical models and machine-learning techniques along satellite-derived aerosol optical depth (AOD) is a promising method to estimate ground-level particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5), mainly in urban areas with low air quality monitor density. Nevertheless, the relationship between AOD and ground-level PM2.5 varies spatiotemporally and differences related to spatial domains, temporal schemes, and seasonal variations must be assessed. Here, an ensemble multiple linear regression (EMLR) model and an ensemble neural network (ENN) model were developed to estimate PM2.5 levels in the Monterrey Metropolitan Area (MMA), the second largest urban center in Mexico. Four AOD-SDSs (Scientific Datasets) from MODIS Collection 6 were tested using three spatial domains and two temporal schemes. The best model performance was obtained using AOD at 0.55 µm from MODIS-Aqua at a spatial resolution of 3 km, along meteorological parameters and daily scheme. EMLR yielded a correlation coefficient (R) of ~0.57 and a root mean square error (RMSE) of ~7.00 μg m−3. ENN performed better than EMLR, with an R of ~0.78 and RMSE of ~5.43 μg m−3. Satellite-derived AOD in combination with meteorology data allowed for the estimation of PM2.5 distributions in an urban area with low air quality monitor density.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...