ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-09
    Description: Hylbrownite, ideally Na 3 MgP 3 O 10 ·12H 2 O, the second known triphosphate mineral, is a new mineral species from the Dome Rock mine, Boolcoomatta Reserve, Olary Province, South Australia, Australia. The mineral forms aggregates and sprays of crystals up to 0.5 mm across with individual crystals up to 0.12 mm in length and 0.02 mm in width. Crystals are thin prismatic to acicular in habit and are elongate along [001]. Forms observed are {010}, {100}, {001}, {210} and {201}. Crystals are colourless to white, possess a white streak, are transparent, brittle, have a vitreous lustre and are non-fluorescent. The measured density is 1.81(4) g cm –3 ; Mohs' hardness was not determined. Cleavage is good parallel to {001} and to {100} and the fracture is uneven. Hylbrownite crystals are nonpleochroic, biaxial (–), with α = 1.390(4), β = 1.421(4), = 1.446(4) and 2V calc. = 82.2°. Hylbrownite is monoclinic, space group P 2 1 / n , with a = 14.722(3), b = 9.240(2), c = 15.052(3) Å, β = 90.01(3)°, V = 2047.5(7) Å 3 , (single-crystal data) and Z = 4. The strongest lines in the powder X-ray diffraction pattern are [ d (Å)( I )( hkl )]: 10.530(60)(101I,101), 7.357(80)(200), 6.951(100)(111I, 111), 4.754(35)(103I, 103), 3.934(40)(022), 3.510(45)(303I, 303), 3.336(35)(411I, 411). Chemical analysis by electron microprobe gave Na 2 O 16.08, MgO 7.08, CaO 0.43, P 2 O 5 37.60, H 2 O calc 38.45, total 99.64 wt.%. The empirical formula, calculated on the basis of 22 oxygen atoms is Na 2.93 Mg 0.99 Ca 0.04 P 2.99 O 9.97 ·12.03H 2 O. The crystal structure was solved from single-crystal X-ray diffraction data using synchrotron radiation ( T = 123 K) and refined to R 1 = 4.50% on the basis of 2417 observed reflections with F 0 〉 4( F 0 ). [Mg(H 2 O) 3 P 3 O 10 ] clusters link in the b direction to Na 6 octahedra, by face and corner sharing. Edge sharing Na 6 octahedra and Na 7 polyhedra form Na 2 O 9 groups which link via corners to form chains along the b direction. Chains link to [Mg(H 2 O) 3 P 3 O 10 ] clusters via corner-sharing in the c direction and form a thick sheet parallel to (100). Sheets are linked in the a direction via hydrogen bonds.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-12-01
    Description: The Paratoo copper deposit, located in the Neoproterozoic to Cambrian Adelaide Geosyncline, South Australia, produced around 360 tons of Cu between 1888 and 1967 from oxidized ores. The deposit is located in the core of a breached, doubly plunging anticline, near a zone of disruption containing brecciated Adelaidean sedimentary rocks and dolerite (‘Paratoo Diapir’), and hosted in dolomitic shales of the Neoproterozoic Burra Formation. Near the surface, the mineralization resides mainly in deeply weathered quartz-magnetite-sulphide (pyrite, chalcopyrite) veins (⩽10 cm wide). At depth, drill cores reveal disseminated magnetite, pyrite, chalcopyrite, copper sulphide and native copper associated with extensive potassic alteration. K-Na-rich fluids also affected the dolerite in the ‘Paratoo diapir’, resulting in the precipitation of K-feldspar, dravite and K-bearing chabazite-Na. The most likely scenario for the genesis of the Paratoo deposit involves circulation of basinal fluids, focusing into the ‘Paratoo Diapir’, and ore precipitation through neutralization by fluid-rock interaction with the dolomitic shales hosting the mineralization.The Paratoo deposit is deeply weathered, with malachite and chrysocolla (± tenorite and cuprite) containing the bulk of the copper recovered from the shallow workings. A diverse assemblage of secondary REE-bearing carbonate minerals, including the new species decrespignyite-(Y) and paratooite-(La), is associated with the weathered base metal and magnetite ores. Whole-rock geochemical analyses of fresh and mineralized host rock and of vein material reveals that the mineralization is associated with a strong, albeit highly variable, enrichment in light rare earth elements (LREE). This association indicates that REE and base metals were introduced by the same hydrothermal fluid. The strong negative Ce anomaly found in secondary REE minerals and mineralized rock samples suggests an upgrade of the REE contents in the weathering zone, insoluble Ce4+ being left behind.The Fe-oxide-REE-base metal association at Paratoo is also characteristic of the giant Mesoproterozoic Fe oxide copper gold deposit of Olympic Dam, located 350 km to the NW. A similar association is found in the Palaeozoic deposits of the Mt Painter Inlier, 300 km to the NNE. The widespread occurrence of this elemental association in the Province probably reflects the geochemistry of the basement, which contains numerous Mesoproterozoic granites enriched in REE and U.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-02-01
    Description: Paratooite-(La) is a new lanthanum-dominant rare-earth copper carbonate from the Paratoo copper mine, near Yunta, Olary district, South Australia. Paratooite-(La) occurs as sheaves and radiating sprays of blade-like to tabular pale blue crystals in thin fissures in a slaty country rock. Individual crystals are typically 50–200 μm in maximum dimension but 〉 X. Paratooite-(La) is a supergene mineral which precipitated from mildly basic carbonated groundwaters. The mineral is named for the type locality.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-02-01
    Description: The exact nature of tripuhyite remains controversial more than 100 years after the first description of the mineral. Different stoichiometries and crystal structures (rutile or tri-rutile types) have been suggested for this Fe-Sb-oxide. To address these uncertainties, we studied tripuhyite from Tripuhy, Minas Gerais, Brazil (type material) and Falotta, Grisons, Switzerland using single-crystal and powder X-ray diffraction (XRD), optical microscopy and electron microprobe analysis.Electron microprobe analyses showed the Fe/Sb ratios to be close to one in tripuhyite from both localities. Single crystal XRD studies revealed that tripuhyite from the type locality and from Falotta have the rutile structure (P42mnm, a = 4.625(4) c = 3.059(5) and a = 4.6433(10) c= 3.0815(9) Å, respectively). Despite careful examination, no evidence for a tripled c parameter, characteristic of the tri-rutile structure, was found and hence the structure was refined with the rutile model and complete Fe-Sb disorder over the cationic sites in both cases (type material: R1 = 3.61%; Falotta material: R1 = 3.96%). The specular reflectance values of type material tripuhyite and lewisite were measured and the following refractive indices calculated (after Koenigsberger): tripuhyite nmin = 2.14, nmax = 2.27; lewisite (cubic) n = 2.04.These results, together with those of 57Fe and 121Sb Mössbauer spectroscopy on natural and synthetic tripuhyites reported in the literature, indicate that the chemical formula of tripuhyite is Fe3+Sb5+O4 (FeSbO4). Thus, tripuhyite can no longer be attributed to the tapiolite group of minerals of general type AB2O6. A comparison of the results presented with the mineralogical data of squawcreekite suggests that tripuhyite and squawcreekite are identical. In consequence, tripuhyite was redefined as Fe3+Sb5+O4 with a rutile-type structure. Both the proposed new formula and unit cell (rutile-type) of tripuhyite as well as the discreditation of squawcreekite have been approved by the Commission on New Mineral and Mineral Names (CNMMN) of the International Mineralogical Association (IMA).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-10-01
    Description: In situ laser ablation high resolution ICP-MS analyses of scheelite from hydrothermal veins at the Archaean Mt. Charlotte gold deposit (Western Australia) show inhomogeneous REE distribution at small scale (
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-01-01
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-01
    Description: Hylbrownite, ideally Na3MgP3O10·12H2O, the second known triphosphate mineral, is a new mineral species from the Dome Rock mine, Boolcoomatta Reserve, Olary Province, South Australia, Australia. The mineral forms aggregates and sprays of crystals up to 0.5 mm across with individual crystals up to 0.12 mm in length and 0.02 mm in width. Crystals are thin prismatic to acicular in habit and are elongate along [001]. Forms observed are {010}, {100}, {001}, {210} and {201}. Crystals are colourless to white, possess a white streak, are transparent, brittle, have a vitreous lustre and are nonfluorescent. The measured density is 1.81(4) g cm−3; Mohs' hardness was not determined. Cleavage is good parallel to {001} and to {100} and the fracture is uneven. Hylbrownite crystals are nonpleochroic, biaxial (−), with α = 1.390(4), β = 1.421(4), γ = 1.446(4) and 2Vcalc. = 82.2°. Hylbrownite is monoclinic, space group P21/n, with a = 14.722(3), b = 9.240(2), c = 15.052(3) Å, β = 90.01(3)°, V = 2047.5(7) Å3, (single-crystal data) and Z = 4. The strongest lines in the powder X-ray diffraction pattern are [d (Å)(I)(hkl)]: 10.530(60)(10,101), 7.357(80)(200), 6.951(100)(11, 111), 4.754(35)(10, 103), 3.934(40)(022), 3.510(45)(30, 303), 3.336(35)(41, 411). Chemical analysis by electron microprobe gave Na2O 16.08, MgO 7.08, CaO 0.43, P2O5 37.60, H2Ocalc 38.45, total 99.64 wt.%. The empirical formula, calculated on the basis of 22 oxygen atoms is Na2.93Mg0.99Ca0.04P2.99O9.97·12.03H2O. The crystal structure was solved from single-crystal X-ray diffraction data using synchrotron radiation (T = 123 K) and refined to R1 = 4.50% on the basis of 2417 observed reflections with F0 〉 4 σ(F0). [Mg(H2O)3P3O10] clusters link in the b direction to Naφ6 octahedra, by face and corner sharing. Edge sharing Naφ6 Octahedra and Naφ7 polyhedra form Na2O9 groups which link via corners to form chains along the b direction. Chains link to [Mg(H2O)3P3O10] clusters via corner-sharing in the c direction and form a thick sheet parallel to (100). Sheets are linked in the a direction via hydrogen bonds.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-09
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-02-01
    Description: Plimerite, ideally Zn (PO4)3(OH)5, is a new mineral from the Block 14 Opencut, Broken Hill, New SouthWales. It occurs as pale-green to dark-olive-green, almost black, acicular to prismatic and bladed crystals up to 0.5 mm long and as hemispherical aggregates of radiating acicular crystals up to 3 mm across. Crystals are elongated along [001] and the principal form observed is {100} with minor {010} and {001}. The mineral is associated with hinsdalite-plumbogummite, pyromorphite, libethenite, brochantite, malachite, tsumebite and strengite. Plimerite is translucent with a pale-greyish-green streak and a vitreous lustre. It shows an excellent cleavage parallel to {100} and {010} and distinct cleavage parallel to {001}. It is brittle, has an uneven fracture, a Mohs’ hardness of 3.5–4, D(meas.) = 3.67(5) g/cm3 and D(calc.) = 3.62 g/cm3 (for the empirical formula). Optically, it is biaxial negative with α = 1.756(5), β = 1.764(4), γ = 1.767(4) and 2V(calc.) of –63º; pleochroism is X pale-greenish-brown, Y pale-brown, Z pale-bluish-green; absorption Z 〉 X 〉 Y; optical orientation XYZ = cab. Plimerite is orthorhombic, space group Bbmm, unit-cell parameters: a = 13.865(3) Å, b = 16.798(3) Å, c = 5.151(10) Å, V = 1187.0(4) Å3 (single-crystal data) and Z = 4. Strongest lines in the X-ray powder diffraction pattern are [d (A˚ ), I, hkl]: 4.638, (50), (111); 3.388, (50), (041); 3.369, (55), (131); 3.168, (100), (132); 2.753, (60), (115); 2.575, (90), (200); 2.414, (75), (220); 2.400, (50), (221); 1.957, (40), (225). Electron microprobe analysis yielded (wt.%): PbO 0.36, CaO 0.17, ZnO 20.17, MnO 0.02, Fe2O3 29.82, FeO 2.98, Al2O3 4.48, P2O5 32.37, As2O5 0.09, H2O (calc) 6.84, total 97.30 (Fe3+/Fe2+ ratio determined by Mössbauer spectroscopy). The empirical formula calculated on the basis of 17 oxygens is Ca0.02Pb0.01Zn1.68Al0.60P3.09As0.01O17.00H5.15. The crystal structure was solved by direct methods and refined to an R1 index of 6.41% for 1332 observed reflections from single-crystal X-ray diffraction data (Mo-Kα radiation, CCD area detector). The structure of plimerite is isotypic with that of rockbridgeite and is based on face-sharing trimers of (Mϕ6) octahedra which link by sharing edges to form chains, that extend in the b-direction. Chains link to clusters comprising pairs of corner-sharing (Mϕ6) octahedra that link to PO4 tetrahedra forming sheets parallel to (001). The sheets link via octahedra and tetrahedra corners into a heteropolyhedral framework structure. The mineral name honours Professor Ian Plimer for his contributions to the study of the geology of ore deposits.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-02-01
    Description: Edwardsite, Cu3Cd2(SO4)2(OH)6·4H2O, is a new mineral from the Block 14 Opencut, Broken Hill, New South Wales, Australia. It occurs as druses of tabular and bladed crystals up to 0.06 mm in size, associated with niedermayrite and christelite. Edwardsite is pale blue, transparent with vitreous lustre and has excellent cleavage parallel to {100}. Density was not measured but the calculated density, from the empirical formula, is 3.53 g cm–3and the Mohs hardness is ∼3. Optically, it is biaxial negative with α ∼ 1.74, β = 1.762(4), γ ∼ 1.77 and 2Vcalc.∼ +62°. The optical orientation is X =b, Y ∼a, Z ∼c. Electron microprobe analysis gave (wt.%): CdO 32.43, CuO 28.06, ZnO 2.26, FeO 0.08, SO320.35, H2Ocalc.(from crystal-structure analysis) 14.14, totalling 99.32. The empirical formula, calculated on the basis of 18 oxygen atoms is Cu2.77Cd1.98Zn0.22Fe0.01(SO4)2.00(OH)5.95·4.06H2O. Edwardsite is monoclinic, space groupP21/c, witha= 10.863(2) Å,b= 13.129(3) Å,c= 11.169(2) Å, β = 113.04(3)°,V= 1465.9(5) Å3(single-crystal data) andZ= 4. The eight strongest lines in the powder diffraction pattern are [d(Å), (I/I0), (hkl)]: 9.991, (90), (100); 5.001, (90), (200, 21); 4.591, (45), (20); 3.332, (60), (300, 032); 3.005, (30), (03); 2.824, (40), (2); 2.769, (55), (20, 042, 10); 2.670, (45), (2). The crystal structure was determined by direct methods and refined toR1 = 3.21% using 1904 observed reflections withFo〉 4σ(Fo) collected using synchrotron X-ray radiation (λ = 0.773418 Å). The structure is based on infinite sheets of edge-sharing Cuϕ6(ϕ: O2–, OH) octahedra and Cdϕ7(ϕ: O2–, H2O) polyhedra parallel to (100). The sheets are decorated on both sides by corner-sharing (SO4) tetrahedra, which also corner-link to isolated Cdϕ6octahedra, thus connecting adjacent sheets. Moderate-strong to weak hydrogen bonding provides additional linkage between sheets.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...