ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2014-03-13
    Beschreibung: Flood monitoring was conducted using multi-sensor data from space-borne optical, and microwave sensors; with cross-validation by ground-based rain gauges and streamflow stations along the Indus River; Pakistan. First; the optical imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) was processed to delineate the extent of the 2010 flood along Indus River; Pakistan. Moreover; the all-weather all-time capability of higher resolution imagery from the Advanced Synthetic Aperture Radar (ASAR) is used to monitor flooding in the lower Indus river basin. Then a proxy for river discharge from the Advanced Microwave Scanning Radiometer (AMSR-E) aboard NASA’s Aqua satellite and rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) are used to study streamflow time series and precipitation patterns. The AMSR-E detected water surface signal was cross-validated with ground-based river discharge observations at multiple streamflow stations along the main Indus River. A high correlation was found; as indicated by a Pearson correlation coefficient of above 0.8 for the discharge gauge stations located in the southwest of Indus River basin. It is concluded that remote-sensing data integrated from multispectral and microwave sensors could be used to supplement stream gauges in sparsely gauged large basins to monitor and detect floods.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-03-20
    Beschreibung: Flood monitoring was conducted using multi-sensor data from space-borne optical, and microwave sensors; with cross-validation by ground-based rain gauges and streamflow stations along the Indus River; Pakistan. First; the optical imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) was processed to delineate the extent of the 2010 flood along Indus River; Pakistan. Moreover; the all-weather all-time capability of higher resolution imagery from the Advanced Synthetic Aperture Radar (ASAR) is used to monitor flooding in the lower Indus river basin. Then a proxy for river discharge from the Advanced Microwave Scanning Radiometer (AMSR-E) aboard NASA’s Aqua satellite and rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) are used to study streamflow time series and precipitation patterns. The AMSR-E detected water surface signal was cross-validated with ground-based river discharge observations at multiple streamflow stations along the main Indus River. A high correlation was found; as indicated by a Pearson correlation coefficient of above 0.8 for the discharge gauge stations located in the southwest of Indus River basin. It is concluded that remote-sensing data integrated from multispectral and microwave sensors could be used to supplement stream gauges in sparsely gauged large basins to monitor and detect floods.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2014-06-11
    Beschreibung: Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.
    Print ISSN: 1661-7827
    Digitale ISSN: 1660-4601
    Thema: Energietechnik , Medizin
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2013-12-28
    Beschreibung: The latest Version-7 (V7) Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products were released by the National Aeronautics and Space Administration (NASA) in December of 2012. Their performance on different climatology, locations, and precipitation types is of great interest to the satellite-based precipitation community. This paper presents a study of TMPA precipitation products (3B42RT and 3B42V7) for an extreme precipitation event in Beijing and its adjacent regions (from 00:00 UTC 21 July 2012 to 00:00 UTC 22 July 2012). Measurements from a dense rain gauge network were used as the ground truth to evaluate the latest TMPA products. Results are summarized as follows. Compared to rain gauge measurements, both 3B42RT and 3B42V7 generally captured the rainfall spatial and temporal pattern, having a moderate spatial correlation coefficient (CC, 0.6) and high CC values (0.88) over the broader Hebei, Beijing and Tianjin (HBT) regions, but the rainfall peak is 6 h ahead of gauge observations. Overall, 3B42RT showed higher estimation than 3B42V7 over both HBT and Beijing. At the storm center, both 3B42RT and 3B42V7 presented a relatively large deviation from the temporal variation of rainfall and underestimated the storm by 29.02% and 36.07%, respectively. The current study suggests that the latest TMPA products still have limitations in terms of resolution and accuracy, especially for this type of extreme event within a latitude area on the edge of coverage of TRMM precipitation radar and microwave imager. Therefore, TMPA users should be cautious when 3B42RT and 3B42V7 are used to model, monitor, and forecast both flooding hazards in the Beijing urban area and landslides in the mountainous west and north of Beijing.
    Digitale ISSN: 2073-4441
    Thema: Energietechnik
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...