ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-02-21
    Description: Within an E.U.-funded project, BESS (Pocket BeachManagement and Remote Surveillance System), the notion of a geographic information system is an indispensable tool for managing the dynamics of georeferenced data and information for any form of territorial planning. This notion was further explored with the creation of aWebGIS portal that will allow local and regional stakeholders/authorities obtain an easy remote access tool tomonitor the status of pocket beaches (PB) in theMaltese Archipelago and Sicily. In this paper, we provide a methodological approach for the implementation of aWebGIS necessary for very detailed dynamic mapping and visualization of geospatial coastal data; the description of the dataset necessary for the monitoring of coastal areas, especially the PBs; and a demonstration of a case study for the PBs of Sicily andMalta by using the methodology and the dataset used during the BESS project. Detailed steps involved in the creation of theWebGIS are presented. These include data preparation, data storage, and data publication and transformation into geo-services. With the help of different Open Geospatial Consortium protocols, theWebGIS displays different layers of information for 134 PBs including orthophotos, sedimentological/geomorphological beach characteristics, shoreline evolution, geometric and morphological parameters, shallow water bathymetry, and photographs of pocket beaches. TheWebGIS allows not only for identifying, evaluating, and directing potential solutions to present and arising issues, but also enables public access and involvement. It reflects a platform for future local and regional coastal zone monitoring and management, by promoting public/private involvement in addressing coastal issues and providing local public administrations with an improved technology to monitor coastal changes and help better plan suitable interventions.
    Description: Published
    Description: 8233
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-09
    Description: This study employs a multimethod approach to investigate the sediment distribution in two pocket beaches, Ramla Beach and Mellieha S Beach, in Malta. Both study sites were digitally reconstructed using unmanned aerial vehicle (UAV) photogrammetry. For each case, an ERT and a dense network of ambient seismic noise measurements processed through a horizontal-to-vertical spectral ratio (HVSR) technique were acquired. Electrical resistivity tomography (ERT) analysis enables the estimation of sediment thickness in each beach. HVSR analysis revealed peaks related to beach sediments overlying limestone rocks in both sites and also indicated a deeper stratigraphic contact in Mellieha S Beach. Based on ERT measurements, sediment thickness is calculated for each HVSR measurement. Interpolation of results allows for bedrock surface modelling in each case study, and when combined with digital terrain models (DTMs) derived from photogrammetric models, sediment volumes are estimated for each site. The geometry of this surface is analyzed from a geological perspective, showing structural control of sediment distribution due to a normal fault in Mellieha S Beach and stratigraphic control facilitated by a highly erodible surface in Ramla Beach. The results emphasize the importance of adopting a three-dimensional perspective in coastal studies for precise sediment volume characterization and a deeper understanding of pocket beach dynamics. This practical multimethod approach presented here offers valuable tools for future coastal research and effective coastal management, facilitating informed decision making amidst the growing vulnerability of coastal zones to climate change impacts.
    Description: This work was partially supported by the project Satellite Investigation to study POcket BEach Dynamics (SIPOBED, SRF-2021-2S1, PI: Sebastiano D’Amico),the project Multi-disciplinary monitoring system for a resilient management of coastal areas (REMACO) funded by the INTERREG V A–Italy-Malta Capitalization Programme, the INGV Project “Ricerca 703 Libera” BR2019.23 (“Unveiling silent faults in low strain-rates regions through the integration 704 of high-resolution geophysical and seismological analyses” P.I. Fabio Villani), and by the Internationalisation Partnership & Awards Scheme Plus (IPAS+) supported by the Malta Council for Science and Technology through the project “Near-surface geophysics and geomatic applied to coastal systems” (IPAS-2022-020).
    Description: Published
    Description: 40
    Description: OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa
    Description: JCR Journal
    Keywords: horizontal-to-vertical spectral ratio; seismic ambient noise; pocket beach; Malta; near-surface geophysics; electrical resistivity tomography; photogrammetry ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...