ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-16
    Description: A series of high and steep slopes have been formed due to the deep exploitation of resources in open-pit mines across China. The stability of these high and steep slopes has become an essential factor affecting the efficient, safe, and sustainable development of deep mineral resources. Due to numerous problems such as constant resistance fluctuation and pipe jamming of the original sliding force monitoring system, leading to system failure, a series of improvements on the current monitoring systems were implemented. This specific work included a mechanical characteristics test of the anchor cable, improvement of the constant resistance structure, and measurement of the internal displacement of the slope. The communication mode and the software architecture of the system were also adjusted. This work significantly improved the overall performance of the sliding force monitoring and early warning system. The improvements performed in this research are systematically described to provide an example of good practice for other sites with similar features. The collected data show that the improved sliding force monitoring system can accurately reflect the whole process of landslide incubation. Moreover, the validity of the early warning criterion based on the sliding force is verified again using the field test.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-29
    Description: In order to explore the monitoring and control method of rock slope, indoor physical model testing of collapse control and monitoring were carried out with the example of a rock slope collapse area project in Jietai Temple in Beijing, China, as the prototype. Based on the similarity theory, in this study, a new structural support with Negative Poisson’s Ratio bolt and flexible anchored net was utilized to reinforce the rock slope. Following a graded loading sequence, the collapse failure characteristics and the overall control effect of energy absorption reinforcement measures were explored. The experimental results demonstrated that the entire process of slope collapse presented four distinct stages of failure: fracture generation, fracture propagation, partial collapse, and overall collapse. The full-field displacement nephogram and the displacement monitoring point of the collapse area indicated that the large deformation and failure of the collapsed surrounding rock were effectively controlled, while the Negative Poisson’s Ratio bolt and the flexible anchored net had good reinforcement effects. The experimental stress record presented that the change of pressure curve was an apparent regularity in the entire process of slope collapse, which reflects the change state of internal force of surrounding rock; it includes the function of monitoring of slope collapse. It was indicated that the Negative Poisson’s Ratio bolt along with the large-deformation flexible anchored net had good reinforcement monitoring effect on the rock slope collapse disaster.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-13
    Description: In view of the large deformation of thin-layer soft rock in the No. 2 inclined shaft of the Muzhailing Tunnel, we performed an experimental investigation on the mineral composition, physical characteristics, and uniaxial compressive strength of the surrounding rock of the tunnel. The characteristics of the large deformation of the surrounding rock of the tunnel were analyzed, and the main factors influencing the deformation of the tunnel were revealed. The influence of various factors on the large deformation of the surrounding rock was analyzed using the 3DEC-Trigon discrete element numerical simulation method. The results show that (1) the deformation of the surrounding rock of the tunnel has remarkable asymmetry, the deformation of the initial support of the tunnel is significant, and the buried depth of the area where the maximum deformation of the tunnel exceeded 1 m is greater than 500 m; (2) the main factors influencing the deformation of a thin-layer slate tunnel include joint inclination, buried depth, water absorption, and softening of the surrounding rock; and (3) the maximum deformation of the surrounding rock is observed for a joint angle of 45°, at which the buried depth is directly proportional to the deformation and failure of the tunnel. Furthermore, after the surrounding rock was softened by water absorption, the floor of the tunnel, the left shoulder socket, and the right side of the tunnel are deformed greatly. The results of this study will provide a theoretical basis for the study of similar deformation control methods and supporting measures for tunnels excavated in thin-layer soft rock.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-28
    Description: Due to the adjustment of energy structure, a large number of coal mines are abandoned. Considering the environmental and economic effects, many experts proposed to use the abandoned mine cavern as the reservoir of the pumped storage power station. Furthermore, considering the long-term effects of repeated pumping and drainage and hydrodynamic pressure on the surrounding rock in coal mines, a large amount of sandstone was collected from the Ruineng coal mine in Yan’an city to carry out a series of laboratory tests. Through uniaxial compression testing of rock samples with different water content rates, combined with acoustic emission (AE) analysis, the strength softening and macrodeformation characteristics are obtained, and the influence of water content on acoustic emission characteristics is clarified. The mechanical properties of water bearing rock under cyclic loading and unloading experiments with varying upper limits are obtained using a triaxial test system, and the precursory information of rock failure is captured, providing significant guidance for stability analysis and instability warning for surrounding rock in pumped storage power stations.
    Print ISSN: 1070-9622
    Electronic ISSN: 1875-9203
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-28
    Description: This paper addresses evaluating the evolution of stress inside the casing-cement sheath-formation system during the cement injection, setting, completion, and production stages of hydrocarbon recovery. This full-life-cycle analysis of cement sheath integrity gives rise to assessment of potential failure mode (i.e., tensile mode, shear mode, and microannulus) in different stages, and the prevention measures can be proposed accordingly. Considering the loading history, two regimes should be distinguished. Before the accomplishment of cementation, as the cement slurry can merely withstand its hydraulic pressure, the in situ stress and the wellbore pressure are withstood by the rock and the casing, respectively. Once the cementation process is completed, the stress increment (e.g., hydraulic fracturing pressure) is withstood by the casing-cement sheath-formation system. The autogenous shrinkage of cement adversely affects the resistance of the system to all types of failure, whereas a moderate swelling of cement is favorable to the cement sheath integrity. In addition, the cement sheath integrity is strongly influenced by the depth: the failure is encountered more easily at the shallow layer. Both the hydraulic fracturing pressure in the completion stage and the increase in casing temperature in the production stage may lead to tensile circumferential stress, and the hydraulic fracturing is the most critical stage for the integrity of cement sheath.
    Print ISSN: 1024-123X
    Electronic ISSN: 1563-5147
    Topics: Mathematics , Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-10-04
    Description: Dynamic model was theoretically established for the two parallel-connected constant-resistance-large-deformation (CRLD) bolts, and the theoretical results were experimentally verified with impact tensile tests on the CRLD bolts samples. The dynamic responses of the double CRLD bolts were investigated under the impact loads with different intensities. The theoretical analyses showed that (1) under relatively small loading the CRLD bolts deform elastically and the deformation finally returns to zero and (2) under the high impact load, including the stable impact load and unstable impact load, the CRLD bolts export structural deformation after the initial elastic deformation. The deformation of the bolts eventually stabilizes at a certain amount of the elongation caused by the relative sliding of the sleeves and rebars. The essential difference between the stable impact load and unstable impact load is that, under the stable impact load, no structural deformation will occur after the impact load ends; under the unstable impact load, the structural deformation will still occur after the impact load ends. The obtained results are of theoretical implications for rock support design with CRLD bolts under the dynamical loading condition.
    Print ISSN: 1024-123X
    Electronic ISSN: 1563-5147
    Topics: Mathematics , Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-16
    Description: In order to solve the problem of roadway deformation based on the theory of “short cantilever beam by roof cutting,” the method of “pressure relief by roof cutting in the adjacent roadway” is proposed. Through presplitting blasting the roadway hard rock layer, the stress propagation path is cut off, and the surrounding rock stress environment of the roadway is improved, to achieve the purpose of controlling the deformation of the roadway caused by stress. Through theoretical analysis, it is determined that the depth of the presplitting blasthole is 17 m, and the angle with the vertical direction is 10°. Based on in situ measurements and tests, by presplitting blasting the roof strata of the adjacent roadway, the maximal value of the working resistance of the hydraulic support in the presplitting blasting side of the working face decreased by 24.9%, and the average volumes of the maximum floor heave, the maximum roof subsidence, and the maximum ribs displacement were reduced by 50.1%, 34.9%, and 41.7%, respectively. This method completely changes the traditional thought patterns of “reinforcing support” to control roadway deformation from “strong support” to “pressure relief.” It provides a new idea for controlling the roadway deformation.
    Print ISSN: 1070-9622
    Electronic ISSN: 1875-9203
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-20
    Description: In order to explore the characteristics of rock pressure distribution with roof cutting and pressure releasing under different composite roof structures and optimize the support design of entry retaining, the mechanical analysis and numerical simulation are used to analyze the structure characteristics of composite roof and the effect of roof cutting under composite roof in this paper. Besides, taking the 8304 working face of Tashan Coal Mine as an example, the results of theoretical research are verified by field-monitoring data of hydraulic supports, working resistance, and roadway deformation. The results show that the weak interlayer in the composite roof is easily damaged under the external force and the distribution of the layer has a key effect on the roof characteristics. When the weak interlayer is located at the middle of the roof cutting layer range, the demand of the roadway support strength is the highest; when the weak interlayer is located at the top of the roof cutting layer range, the demand of the roadway support strength is the lowest. Furthermore, with the increase of the height of the weak interlayer in the roof cutting layer range, the stress concentration peak of the coal wall side decreases first and then rises, then descends again, and the trend can be fitted by the curve of a three-degree equation.
    Print ISSN: 1070-9622
    Electronic ISSN: 1875-9203
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-10-23
    Description: Strain burst is often considered to be a type of failure related to brittle rock material; therefore, many studies on strain burst focus on the brittleness of rock. However, the laboratory experiments show that strain burst can not only occur in hard brittle rock-like granite but also in the relatively ductile rock-like argillaceous sandstone. This result proves that behavior of rock material is not the only factor influencing the occurrence of strain burst. What must also be considered is the relative stiffness between the excavation wall/ore body and the surrounding rock mass. In order to further studying the mechanism of strain burst considering the whole system, the engineering geomechanial model and numerical model of strain burst due to excavation are built, respectively. In a series of numerical tests, the rock mass involving the excavation wall as well as roof and floor is biaxially loaded to the in situ stress state before one side of the excavation wall is unloaded abruptly to simulate the excavation in the field. With various system stiffness determined by the microproperties including the contact moduli of particles and parallel bond moduli in the models of roof and floor, the different failure characteristics are obtained. Based on the failure phenomenon, deformation, and released energy from the roof and floor, this study proves that the system stiffness is a key factor determining the violence of the failure, and strain burst is prone to happen when the system is soft. Two critical Young’s moduli ratios and stiffness ratios are identified to assess the violence of failure.
    Print ISSN: 1070-9622
    Electronic ISSN: 1875-9203
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-27
    Description: Noncoal pillar mining with automatic formation of a roadway is a new coal mining method that is tailored to improve the coal resource recovery rate and reduce the investment in roadway tunneling. Using this proposed method, a reuse entry is formed by roof cutting instead of tunneling. In this paper, the S1201-II working face of the Ningtiaota Coal Mine was used as a case study. The stress distribution of surrounding rock and the roof deformation characteristics of the reused entry during the mining process of the second working face were studied through FLAC3D numerical simulations combined with field measurements. The results indicate that the zone close to the reused entry led to higher stress in advance. If this stress is superimposed with the lateral pressure of the adjacent mined working face, it will be more difficult to maintain the reused entry. In the engineering case study described here, the reused entry created a stress increase zone and a severe deformation zone in the range of 0–80 m in front of the working face, and its range was approximately 37.5% larger than an ordinary entry. The stress peak in the stress increase zone increased by approximately 34.7% over that of an ordinary entry. The maximum amount of deformation within the severe deformation zone increased by 94.4% over that of an ordinary entry. To properly control the surrounding rock stress and deformation of the reused entry, a dynamic pressure bearing support in front of the working face with adaptability to the large roof deformation and high support strength is proposed here. Field application results showed that the final roof deformation with the dynamic pressure bearing support can be satisfactorily controlled within 110∼130 mm. These findings can provide a reference for researchers and field engineering technicians when engaging in the support work of reused entry.
    Print ISSN: 1070-9622
    Electronic ISSN: 1875-9203
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...