ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-15
    Description: Modern generations of apparent polar wander paths (APWPs) show the occurrence in North American and African coordinates of a major and rapid shift in pole position (plate shift) during the Middle to Late Jurassic (175–145 Ma) that alternative curves from the literature tend to underestimate. This Jurassic massive polar shift (JMPS), of vast and as-yet unexplored paleogeographic implications, is also predicted for Eurasia from the North Atlantic plate circuit, but Jurassic data from this continent are scanty and problematic. Here we present paleomagnetic data from the Kimmeridgian–Tithonian (upper Jurassic) Garedu Formation of Iran, which was part of Eurasia since the Triassic. Paleomagnetic component directions of primary (pre-folding) age indicate a paleolatitude of deposition that is in excellent agreement with the latitude drop predicted for Iran from APWPs incorporating the JMPS. Moreover, we show that paleolatitudes calculated from these APWPs, used in conjunction with simple zonal climate belts, better explain the overall stratigraphic evolution of Iran during the Mesozoic. As Iran drifted from the tropical arid belt to the mid-latitude humid belt in the Late Triassic, carbonate platform productivity stopped while widespread coal-bearing sedimentation started, whereas as Iran returned to arid tropical latitudes during the JMPS, carbonate platform productivity and evaporitic sedimentation resumed. These results illustrate (1) the potent, but often neglected, control that plate motion (continental drift and/or true polar wander) across zonal climate belts exerts on the genesis of sedimentary facies; and (2) the importance of precisely controlled paleogeographic reconstructions for tectonic interpretations, especially during times of fast plate motion like the Jurassic. As a suggestion for future research, we predict that the adoption of Eurasian reference paleopoles incorporating the JMPS may lead to a reconciliation (or reinterpretation) of existing geologic and paleomagnetic data regarding the deformation history of central Asia.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-01
    Description: Submarine felsic volcanoes are dominated by hyaloclastic piles hundreds of meters thick, the origin of which, in terms of how and when they form, is far from being completely understood. Here we present a study of the thermal remanent magnetization of the Miocene high-K dacitic El Barronal hyaloclastites (Cabo de Gata, Spain), showing that their formation is dominated by in situ fragmentation with small or negligible transportation and/or rotation of different clasts after their formation. Data indicate that fragmentation progressed down to 210–390 °C, well below the glass-transition temperature estimated at 560–750 °C depending on the water content of the high-K dacite. Hence, hyaloclastite fragmentation in thick lavas may occur over most of the cooling history, as a result of the progressive access of sea water toward the lava interior by development of a complex network of contraction fractures.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...