ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3EGU General Assembly, online, 2021Atlantic Water Modification North of Svalbard in the Mercator Physical System From 2007 to 2020 , EGU
    Publication Date: 2022-07-05
    Description: The Atlantic Water (AW) inflow through Fram Strait, largest oceanic heat source to the Arctic Ocean, undergoes substantial modifications in the Western Nansen Basin (WNB). Evaluation of the Mercator system in the WNB, using 1,500 independent temperature‐salinity profiles and five years of mooring data, highlighted its performance in representing realistic AW inflow and hydrographic properties. In particular, favorable comparisons with mooring time‐series documenting deep winter mixed layers and changes in AW properties led us to examine winter conditions in the WNB over the 2007–2020 period. The model helped describe the interannual variations of winter mixed layers and documented several processes at stake in modifying AW beyond winter convection: trough outflows and lateral exchange through vigorous eddies. Recently modified AW, either via local convection or trough outflows, were identified as homogeneous layers of low buoyancy frequency. Over the 2007–2020 period, two winters stood out with extreme deep mixed layers in areas that used to be ice‐covered: 2017/18 over the northern Yermak Plateau‐Sofia Deep; 2012/13 on the continental slope northeast of Svalbard with the coldest and freshest modified AW of the 12‐year time series. The northern Yermak Plateau‐Sofia Deep and continental slope areas became “Marginal Convection Zones” in 2011 with, from then on, occasionally ice‐free conditions, 50‐m‐ocean temperatures always above 0 °C and highly variable mixed layer depths and ocean‐to‐atmosphere heat fluxes. In the WNB where observations require considerable efforts and resources, the Mercator system proved to be a good tool to assess Atlantic Water modifications in winter.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3EGU General Assembly, online, 2022Changes in Atlantic Water circulation patterns and volume transports North of Svalbard over the last 12 years (2008-2020) , EGU
    Publication Date: 2022-07-05
    Description: Atlantic Water (AW) enters the Arctic through Fram Strait as the West Spitsbergen Current (WSC). When reaching the south of Yermak Plateau, the WSC splits into the Svalbard, Yermak Pass and Yermak Branches. Downstream of Yermak Plateau, AW pathways remain unclear and uncertainties persist on how AW branches eventually merge and contribute to the boundary current along the continental slope. We took advantage of the good performance of the 1/12° Mercator Ocean model in the Western Nansen Basin (WNB) to examine the AW circulation and volume transports in the area. The model showed that the circulation changed in 2008-2020. The Yermak Branch strengthened over the northern Yermak Plateau, feeding the Return Yermak Branch along the eastern flank of the Plateau. West of Yermak Plateau, the Transpolar Drift likely shifted westward while AW recirculations progressed further north. Downstream of the Yermak Plateau, an offshore current developed above the 3800 m isobath, fed by waters from the Yermak Plateau tip. East of 18°E, enhanced mesoscale activity from the boundary current injected additional AW basin-ward, further contributing to the offshore circulation. A recurrent anticyclonic circulation in Sofia Deep developed, which also occasionally fed the western part of the offshore flow. The intensification of the circulation coincided with an overall warming in the upper WNB (0-1000 m), consistent with the progression of AW. This regional description of the changing circulation provides a background for the interpretation of upcoming observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...