ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3EGU General Assembly 2016, Vienna, Austria, 2016-04-18-2016-04-22Vienna, Austria, EGU
    Publication Date: 2015-12-14
    Description: Sediment delivery to the abyssal regions of the oceans is an integral process in the source to sink cycle of material derived from the hinterland. How sediments are transported down-slope, and where they are deposited has implications for the mass balance of the upper lithosphere, hydrocarbon reserves, climate archives and sequence stratigraphic models. The Zambezi River, the largest in southern Africa, delivers vast amounts of material to the continental shelf, submarine Sofala/Zambesia Bank. The Sofala/Zambesia Bank acts as a staging area for this riverine input prior to its redistribution toward the abyssal plains of the Mozambique Channel. Much of this material is said to be directed into the submarine Zambezi Valley and Channel. Until this study, however, the sediment transfer routes between the Sofala/Zambesia Bank and abyssal plains of the Mozambique Channel have been quite poorly understood and remain unconstrained. The aim of this contribution is to better constrain sediment transport pathways to the abyssal plains using the latest, regional, high resolution multibeam bathymetry data available, taking into account the effects of bottom water circulation, antecedent basin morphology and sea level change. Results show that sediment transport and delivery to the abyssal plains is discreetly partitioned into southern, central and northern domains. This sediment partitioning is primarily controlled by changes in continental shelf and shelf break morphology under the influence of a dynamic anticyclonic inshore circulation system. However, changes in base level have an overarching control on sediment delivery to particular domains at various sea levels. A direct consequence of these controlling factors is limited sediment delivery to the submarine Zambezi Valley and Channel under present-day conditions, with increased activity envisaged during regression. Furthermore, the “on-off” switching of discrete domains along strike is a sequence stratigraphic concept generally not previously considered in the shelf-slope-abyssal continuum. The proposed sediment transport routes, under varied sea level scenarios, provide a framework which relates shallow to mid depth studies with those focused on the deep regions of the Mozambique Channel providing the first inclusive account of shelf to abyssal sediment transport in the region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-20
    Description: Integrating geophysics with geology, and specifically geochronology, reveals the complex tectonic history of Dronning Maud Land, an important part of East Antarctica, and a crucial element for Rodinia and Gondwana reconstructions. We recognise three major tectonic provinces: a westernmost part with Kalahari, Africa, affinities and an easternmost part from about 35E with Indo-Antarctic affinities; sandwiched in between these two blocks, is an extensive region with juvenile Neoproterozoic crust (ca. 990-900 Ma), the Tonian Oceanic Arc Super Terrane (TOAST) that shows very limited signs of a pre-Neoproterozoic history. We have tested the spatial extent of the TOAST by a regional moraine study that confirm the lack of older material inland, though latest Mesoproterozoic juvenile rocks frequently do occur in the glacial drift and probably record a slightly earlier precursor of the TOAST inland. The TOAST records 150 Ma of almost continuous tectono-metamorphic reworking at medium- to high-grade metamorphic conditions between ca. 650 to 500 Ma. This long-lasting overprinting history is thought to record protracted accretion of ocean island arc terranes and the final amalgamation of East Antarctica along the major East African-Antarctic Orogen. There is no sign of significant metamorphic overprint immediately after the formation of TOAST. Therefore, these island arcs may have formed independent of or peripheral to Rodinia and may reveal major accretionary tectonics outboard of Rodinia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3EGU General Assembly 2014, Vienna, 2014-04-27-2014-05-02EGU, EGU
    Publication Date: 2016-01-21
    Description: The Baffin Bay between Greenland and Baffin Island (Canada) opened during the separation of Greenland and Canada in the Palaeocene and Eocene. The Melville Bay is situated in its northeastern part. The crustal composition of Northern and Southern Baffin Bay has been studied in detail: Southern Baffin Bay is underlain by oceanic crust with volcanic margins, while the margins of northern Baffin Bay are characterized by serpentinized mantle material. In contrast, the nature of crust in the deep, central Baffin Bay and the Melville Bay was still unclear due to a lack of deep seismic sounding lines. In 2010 a joint geophysical experiment in the Greenlandic part of Baffin Bay acquired seismic, magnetic and gravity data. We present three velocity and density models derived from seismic refraction and gravity data. Two of the three profiles are located within the Melville Bay and extend in a SW - NE direction from the deep sea area of central Baffin Bay to the shelf area of the Melville Bay. The third profile crosses the northern profile in the Melville Bay and extends in a N - S direction into the Northern Baffin Bay. The profiles in the Melville Bay can be divided in three crustal sections. The deep-sea area reveals a 3.5 - 7 km thick, 2-layered oceanic crust with increasing thickness towards the shelf and up to 6 km thick sediments. The crust is underlain by serpentinized upper mantle with velocities of 7.6 - 7.8 kms-1. A transition zone, which is affected by volcanism, connects the oceanic crust with stretched continental crust underneath the Melville Bay. Basement highs and deep sediment basins characterize the stretched and rifted continental crust. The Melville Bay Graben, the deepest rift basin in Melville Bay, contains up to 10 km thick, possibly metamorphosed sediments with unusually high velocities of up to 4.9 kms 1. Well-constrained reflections of the crust-mantle boundary can be found in many seismic sections indicating a maximum crustal thickness of ~ 26 km in the northern profile and ~ 32 km in the southern profile. In the southern part of the third, N-S extending profile, a 2-layered oceanic crust is covered by up to 5 km thick sediments. Underneath the shelf edge, the crust thickens towards the north in several steps and reaches a maximum thickness of ~ 40 km. The northern part of the profile is characterized by faulted end eroded basement, which crops out at the seafloor.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-22
    Description: The Alpha–Mendeleev ridge complex is a prominent physiographic and geological feature of the Arctic Amerasia Basin. The Alpha and Mendeleev ridges are, respectively, the eastern and western components of a continuous seafloor high that is approximately 2000 km long and 200–400 km wide. A surge of interest in the tectonic evolution of Arctic submarine features has led to a wealth of new geophysical data collected from the Alpha Ridge. Current interpretations of its origin vary but there is compelling evidence that the Alpha Ridge may have formed as an oceanic plateau during the Late Cretaceous. Geological samples are rare but most samples recovered indicate a genetic link with the High Arctic Large Igneous Province (HALIP). In August 2016, Canada’s Extended Continental Margin-United Nations Convention on the Law of the Sea Program dredged approximately 100 kg of volcanic rocks from the Alpha Ridge. The large size and pristine state of the samples enabled the first comprehensive study of a single eruptive event in the volcanic record of the Alpha Ridge. The dredge sample is a lapilli tuff containing vitric and basaltic clasts. Textural evidence and the coexistence of juvenile and cognate clasts suggest a phreatomagmatic eruption. The vitric fragments consist of sideromelane glass with abundant plagioclase microlites. Texturally, these basaltic glass lapilli display a fresh glassy core surrounded by Fe- and Ti-rich zones and a palagonite rim. Major and trace element analyses of glassy cores indicate remarkably uniform, mildly alkaline basaltic compositions. The plagioclase-bearing glass yielded a 40Ar/39Ar plateau age of 90.40±0.26 Ma (2σ error) which included 89% of 39 Ar released. We interpret this result to represent the eruption age of the plagioclase microlites and consequently, of the host basaltic glass lapilli in the tuff. Volatile species analyses by infrared spectroscopy on the fresh basaltic glass suggests that the melt was effectively degassed to shallow level. Assuming equilibrium degassing, the homogeneous resulting values of H2O total in the range 0.1 to 0.19 wt.% (1σ error) indicate subaerial or shallow eruption (surface to 80 m). The new 40Ar/39Ar age for the sample is consistent with a 40 Ar/39Ar age of 89±1 Ma obtained for a sample of tholeiitic basalt dredged from the central part of the Alpha Ridge, and with the range of ages reported for HALIP igneous rocks exposed onshore in the Canadian Arctic Archipelago (130-80 Ma). Our new data provide evidence for local emergence of the Alpha Ridge in the Late Cretaceous. A comparison the Alpha Ridge and Kerguelen Plateau–Broken Ridge Large Igneous Province (LIP) provides new insights on the episodic nature of LIP magmatism and variations in eruptive style through time.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...