ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3European Geosciences Union General Assembly 2018, Vienna, 2018-04-08-2018-04-13Copernicus Publications
    Publication Date: 2018-04-16
    Description: Understanding the dynamics of warm climate states has gained increasing importance in the face of anthropogenic climate change. During the Last Interglacial (LIG, ∼128 to 116 ka), greenhouse gas concentrations and high latitude insolation were higher than pre-industrial levels, causing a high-latitude warming (Turney and Jones, 2010; Pfeiffer and Lohmann, 2016). We present a suite of climate model results (COSMOS, MPI-ESM, AWI-CM, EC-Earth) to evaluate the patterns and compare the simulations with the above-mentioned surface temperature reconstructions, seasonal archives (Felis et al., 2015; Brocas et al., 2017), and sea ice reconstructions (Stein et al., 2017). As a result of this modestly warmer climate, polar ice sheets were smaller and estimates report that the global mean sea level was 6-9 meters higher than today (Dutton et al., 2015). The sensitivity of the Antarctic Ice sheet is related to the local temperature around the West Antarctic Ice Sheet (WAIS) (Sutter et al., 2016). Our ice sheet model experiments indicate that a 2-3°C local warming causes already a partially collapsed, irreversible WAIS. A pronounced subsurface oceanic warming can destabilize the WAIS, resulting in an oceanic gateway between the Ross and Weddell Seas. A sensitivity study using the new oceanic gateway between the Atlantic and Pacific Oceans as a bathymetrical boundary condition indicates that this region would be covered by sea ice. Mixing due to sea-ice formation prevents a pronounced warming around the WAIS and would stabilize the WAIS. Thus, the disintegration of the WAIS is probably related to non-local influences like in Hellmer et al. (2017) where the shelves of West Antarctica are warmed from below by Circumpolar Deep Water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...