ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Cambridge University Press  (1)
  • Copernicus Publications  (1)
  • 1
    Publikationsdatum: 2018-03-22
    Beschreibung: The positive degree-day (PDD) model provides a particularly simple approach to estimate surface melt from land ice based solely on air temperature. Here, we use a climate and snow pack simulation of the Greenland ice sheet (Modèle Atmosphérique Régional, MAR) as a reference, to analyze this scheme in three realizations that incorporate the sub-monthly temperature variability differently: (i) by local values, (ii) by local values that systematically overestimate the dampened variability associated with intense melting or (iii) by one constant value. Local calibrations reveal that incorporating local temperature variability, particularly resolving the dampened variability of melt areas, renders model parameters more temperature-dependent. This indicates that the negative feedback between surface melt and temperature variability introduces a non-linearity into the temperature – melt relation. To assess the skill of the individual realizations, we hindcast melt rates from MAR temperatures for each realization. For this purpose, we globally calibrate Greenland-wide, constant parameters. Realization (i) exhibits shortcomings in the spatial representation of surface melt unless temperature-dependent instead of constant parameters are calibrated. The other realizations perform comparatively well with constant parametrizations. The skill of the PDD model primarily depends, however, on the consistent calibration rather than on the specific representation of variability.
    Print ISSN: 0022-1430
    Digitale ISSN: 1727-5652
    Thema: Geographie , Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Copernicus Publications
    In:  EPIC3European Geosciences Union General Assembly 2018, Vienna, 2018-04-08-2018-04-13Copernicus Publications
    Publikationsdatum: 2018-04-16
    Beschreibung: Understanding the dynamics of warm climate states has gained increasing importance in the face of anthropogenic climate change. During the Last Interglacial (LIG, ∼128 to 116 ka), greenhouse gas concentrations and high latitude insolation were higher than pre-industrial levels, causing a high-latitude warming (Turney and Jones, 2010; Pfeiffer and Lohmann, 2016). We present a suite of climate model results (COSMOS, MPI-ESM, AWI-CM, EC-Earth) to evaluate the patterns and compare the simulations with the above-mentioned surface temperature reconstructions, seasonal archives (Felis et al., 2015; Brocas et al., 2017), and sea ice reconstructions (Stein et al., 2017). As a result of this modestly warmer climate, polar ice sheets were smaller and estimates report that the global mean sea level was 6-9 meters higher than today (Dutton et al., 2015). The sensitivity of the Antarctic Ice sheet is related to the local temperature around the West Antarctic Ice Sheet (WAIS) (Sutter et al., 2016). Our ice sheet model experiments indicate that a 2-3°C local warming causes already a partially collapsed, irreversible WAIS. A pronounced subsurface oceanic warming can destabilize the WAIS, resulting in an oceanic gateway between the Ross and Weddell Seas. A sensitivity study using the new oceanic gateway between the Atlantic and Pacific Oceans as a bathymetrical boundary condition indicates that this region would be covered by sea ice. Mixing due to sea-ice formation prevents a pronounced warming around the WAIS and would stabilize the WAIS. Thus, the disintegration of the WAIS is probably related to non-local influences like in Hellmer et al. (2017) where the shelves of West Antarctica are warmed from below by Circumpolar Deep Water.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...