ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2003-04-30
    Beschreibung: We show two examples from the CANOPUS array of the optical signatures of auroral arcs produced by field line resonances on the night of 31 January 1997. The first example occurs during local evening at about 18:00 MLT (Magnetic Local Time), where CANOPUS meridian scanning photometer data show all the classic features of field line resonances. There are two, near-monochromatic resonances (at approximately 2.0 and 2.5 mHz) and both show latitudinal peaks in amplitude with an approximately 180 degree latitudinal phase shift across the maximum. The second field line resonance event occurs closer to local midnight, between approximately 22:00 and 22:40 MLT. Magnetometer and optical data show that the field line resonance has a very low frequency, near 1.3 mHz. All-sky imager data from CANOPUS show that in this event the field line resonances produce auroral arcs with westward propagation, with arc widths of about 10 km. Electron energies are on the order of 1 keV. This event was also seen in data from the FAST satellite (Lotko et al., 1998), and we compare our observations with those of Lotko et al. (1998). A remarkable feature of this field line resonance is that the latitudinal phase shift was substantially greater than 180 degrees. In our discussion, we present a model of field line resonances which accounts for the dominant physical effects and which is in good agreement with the observations. We emphasize three points. First, the low frequency of the field line resonance in the second event is likely due to the stretched topology of the magnetotail field lines, with the field line resonance on field lines threading the earthward edge of the plasma sheet. Second, the latitudinal phase structure may indicate dispersive effects due to electron trapping or finite ion gyroradius. Third, we show that a nonlocal conductivity model can easily explain the parallel electric fields and the precipitating electron energies seen in the field line resonance.Key words. Magnetospheric physics (electric fields; energetic particles precipitating; current systems)
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2001-09-30
    Beschreibung: On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR) and approached the post-noon dayside magnetopause over Green-land between 13:00 and 14:00 UT. During that interval, a sudden reorganisation of the high-latitude dayside convection pattern occurred after 13:20 UT, most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Söndre Strömfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.Key words. Magnetospheric cusp, ionosphere, reconnection, convection flow-channel, Cluster, ground-based observations
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2004-06-14
    Beschreibung: Recent statistical studies show the existence of an island of cavities and enhanced electric field structures at 4-5RE radial distance in the evening and midnight magnetic local time (MLT) sectors in the auroral region during disturbed conditions, as well as ion beam occurrence frequency changes at the same altitude. We study the possibility that the mechanism involved is electron Landau resonance with incoming Alfvén waves and study the feasibility of the idea further with Polar electric field, magnetic field, spacecraft potential and electron data in an event where Polar maps to a substorm over the CANOPUS magnetometer array. Recently, a new type of auroral kilometric radiation (AKR) emission originating from ~2-3RE radial distance, the so-called dot-AKR emission, has been reported to occur during substorm onsets and suggested to also be an effect of Alfvénic wave acceleration in a pre-existing auroral cavity. We improve the analysis of the dot-AKR, giving it a unified theoretical handling with the high-altitude Landau resonance phenomena. The purpose of the paper is to study the two types of Alfvénic electron acceleration, acknowledging that they have different physical mechanisms, altitudes and roles in substorm-related auroral processes.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...