ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-07
    Description: Ion chromatography measurements of 1730 snow and firn samples obtained from three short cores and one pit in the Vostok station area, East Antarctica, allowed for the production of the combined volcanic record of the last 900 years (AD 1093–2010). The resolution of the record is 2–3 samples per accumulation year. In total, 24 volcanic events have been identified, including seven well-known low-latitude eruptions (Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Huanaputina 1600, Kuwae 1452, El Chichon 1259) found in most of the polar ice cores. In comparison with three other East Antarctic volcanic records (South Pole, Plateau Remote and Dome C), the Vostok record contains more events within the last 900 years. The differences between the records may be explained by local glaciological conditions, volcanic detection methodology, and, probably, differences in atmospheric circulation patterns. The strongest volcanic signal (both in sulfate concentration and flux) was attributed to the AD 1452 Kuwae eruption, similar to the Plateau Remote and Talos Dome records. The average snow accumulation rate calculated between volcanic stratigraphic horizons for the period AD 1260–2010 is 20.9 mm H2O. Positive (+13%) anomalies of snow accumulation were found for AD 1661–1815 and AD 1992–2010, and negative (−12%) for AD 1260–1601. We hypothesized that the changes in snow accumulation are associated with regional peculiarities in atmospheric transport.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-04
    Description: A 182 m ice core was recovered from a borehole drilled into bedrock on the western plateau of Mt. Elbrus (43°20´53.9'' N, 42°25´36.0'' E; 5115 m a.s.l.) in the Caucasus, Russia, in 2009. This is the first ice core in the region that represents a paleoclimate record that is practically undisturbed by seasonal melting. Relatively high snow accumulation rates at the drilling site enabled the analysis of the intraseasonal variability in climate proxies. Borehole temperatures ranged from −17 °C at 10 m depth to −2.4 °C at 182 m. A detailed radio-echo sounding survey showed that the glacier thickness ranged from 45 m near the marginal zone of the plateau up to 255 m at the glacier center. The ice core has been analyzed for stable isotopes (δ18O and δD), major ions (K+, Na+, Ca2+, Mg2+, NH4+, SO42-, NO3-, Cl-, F-), succinic acid (HOOCCH2COOH), and tritium content. The mean annual net accumulation rate of 1455 mm w.e. for the last 140 years was estimated from distinct annual oscillations of δ18O, δD, succinic acid, and NH4+. Annual layer counting also helped date the ice core, agreeing with the absolute markers of the tritium 1963 bomb horizon located at the core depth of 50.7 m w.e. and the sulfate peak of the Katmai eruption (1912) at 87.7 m w.e. According to mathematical modeling results, the ice age at the maximum glacier depth is predicted to be ~ 660 years BP. The 2009 borehole is located downstream from this point, resulting in an estimated basal ice age of less than 350–400 years BP at the drilling site. The glaciological and initial chemical analyses from the Elbrus ice core help reconstruct the atmospheric history of the European region.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-16
    Description: A 182 m ice core has been recovered from a borehole drilled through the glacier to the bedrock at the Western Plateau of Mt Elbrus (43°20'53.9'' N, 42°25'36.0'' E; 5115 m a.s.l.), the Caucasus, Russia, in 2009. This is the first ice core in the region which represents a paleoclimate record practically undisturbed by seasonal melting. Relatively high snow accumulation rate at the drilling site enabled analysis of the intra-seasonal climate proxies' variability. Borehole temperatures ranged from −17 °C at 10 m depth and −2.4 °C at 182 m. A detailed radio-echo sounding survey showed that the glacier thickness ranged from 45 m near marginal zone of the plateau up to 255 m at the central part. The ice core has been analyzed for stable isotopes (δ18O and δ D), major ions (K+, Na+, Ca2+, Mg2+, NH4+, SO42-, NO3-, Cl-, F-), succinic acid (HOOCCH2COOH), and tritium content. The mean annual net accumulation rate was estimated from distinct annual oscillations of δ18O, δ D, succinic acid, and NH4+ and is 1455 mm w.e. for the last 140 years. Using annual layer counting also for the dating of the ice core, a good agreement with the absolute markers of the tritium 1963 bomb test time horizon located at the core depth of 50.7 m w.e. and the sulfate peak of the Katmai eruption (1912) at 87.7 m w.e. was obtained. According to mathematical modeling results, the bottom ice age at the maximal glacier depth is predicted to be about 660 years BP. As the 2009 borehole was situated downstream of this point, the estimated bottom ice age of the drilling site does not exceed 350–400 years BP. Taking into account the information that we have acquired on the Western Plateau Elbrus glacier and first results of the ice core analysis, these data can be used to reconstruct the atmospheric history of the European region.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-06
    Description: Detailed volcanic record of the last 900 yr (1093–2010 AD) has been received using high resolution (2–3 samples per accumulation year) sulfate measurements in four snow/firn cores from the Vostok station area, East Antarctica. Totally, 33 volcanic events have been identified in the record, including well-known low latitude eruption signals found in many polar ice cores (e.g., Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Huanaputina 1600, Kuwae 1452), however in comparison with other Antarctic sites the record has more events covering the last 900 yr. The strongest volcanic signals occurred during mid-13th, mid-15th and 18th centuries. The largest volcanic signal of Vostok (both in sulfate concentration and flux) is the 1452 AD Kuwae eruption. Average snow accumulation rate calculated for the period 1093–2010 AD is 21.3 ± 2.3 mm H2O. Accumulation record demonstrates a slight positive trend, however sharply increased accumulation rate during the periods from 1600 to 1815 AD (by 11% from long-term mean) and from 1963 to 2010 AD (by 15%) are typical features of the site. Na+ record shows strong decadal-scale variability probably connected with coupled changes in atmospheric transport patterns over Antarctica (meridional circulation change) and local glaciology. The obtained high resolution climatic records suggest a high sensitivity of the Vostok location to environmental changes in Southern Hemisphere.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-17
    Description: We present the results of glaciological investigations in the mega-dune area located 30 km to the east from Vostok Station (central East Antarctica) implemented during the 58th, 59th and 60th Russian Antarctic Expedition (January 2013–January 2015). Snow accumulation rate and isotope content (δD, δ18O and δ17O) were measured along the 2 km profile across the mega-dune ridge accompanied by precise GPS altitude measurements and GPR survey. It is shown that the spatial variability of snow accumulation and isotope content covaries with the surface slope. The accumulation rate regularly changes by one order of magnitude within the distance 〈 1 km, with the reduced accumulation at the leeward slope of the dune and increased accumulation in the hollow between the dunes. At the same time, the accumulation rate averaged over the length of a dune wave (22 mm we) corresponds well with the value obtained at Vostok Station, which suggests no additional wind-driven snow sublimation in the mega-dunes compared to the surrounding plateau. The snow isotopic composition is in negative correlation with the snow accumulation. Analyzing dxs/δD and 17O-excess/δD slopes, we conclude that the spatial variability of the snow isotopic composition in the mega-dune area could be explained by post-depositional snow modifications. Using the GPR data, we estimated the apparent dune drift velocity (4.6 ± 1.1 m yr−1). The full cycle of the dune drift is thus about 410 years. Since the spatial anomalies of snow accumulation and isotopic composition are supposed to drift with the dune, an ice core drilled in the mega-dune area would exhibit the non-climatic 410 year cycle of these two parameters. We simulated a vertical profile of snow isotopic composition with such a non-climatic variability, using the data on the dune size and velocity. This artificial profile is then compared with the real vertical profile of snow isotopic composition obtained from a core drilled in the mega-dune area. We note that the two profiles are very similar. The obtained results are discussed in terms of interpretation of data obtained from ice cores drilled beyond the mega-dune areas.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-18
    Description: The isotopic composition of oxygen and hydrogen in ice cores are invaluable tools for the reconstruction of past climate variations. Used alone, they give insights into the variations of the local temperature, whereas taken together they can provide information on the climatic conditions at the point of origin of the moisture. However, recent analyses of snow from shallow pits indicate that the climatic signal can become erased in very low accumulation regions, due to local processes of snow reworking. The signal to noise ratio decreases and the climatic signal can then only be retrieved using stacks of several snow pits. Obviously, the signal is not completely lost at this stage, otherwise it would be impossible to extract valuable climate information from ice cores as has been done, for instance, for the last glaciation. To better understand how the climatic signal is passed from the precipitation to the snow, we present here results from varied snow samples from East Antarctica. First, we look at the relationship between isotopes and temperature from a geographical point of view, using results from three traverses across Antarctica, to see how the relationship is built up through the distillation process. We also take advantage of these measures to see how second order parameters (d-excess and 17O-excess) are related to δ18O and how they are controlled. d-excess increases in the interior of the continent (i.e. when δ18O decreases), due to the distillation process, whereas 17O-excess decreases in remote areas, due to kinetic fractionation at low temperature. In both cases, these changes are associated with the loss of original information regarding the source. Then, we look at the same relationships in precipitation samples collected over one year at Dome C and Vostok, as well as in surface snow at Dome C. We note that the slope of the δ18O / T relationship decreases in these samples compared to those from the traverses, and thus advocate caution when using spatial slopes for past climate reconstruction. The second-order parameters behave in the same way in the precipitation as in the surface snow from traverses, indicating that similar processes are active. Finally we check if the same relationships between δ18O and second-order parameters are also found in the snow from four snow pits. While the d-excess remains opposed to δ18O in most snow pits, the 17O-excess is no longer positively correlated to δ18O and even shows anti-correlation to δ18O at Vostok. This may be due to a stratospheric influence at this site and/or to post-deposition processes.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-10-26
    Description: We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories which are compared to ice sheet model results. Our results suggest that, for coastal sites, elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-04-28
    Description: We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-10-08
    Description: Isotopic content of the snow and firn thickness is assumed to be altered significantly due to the post-depositional (PD) mass- and isotope exchange with the atmospheric water vapor. If so, these effects should be accounted for in the ice core-based isotope-temperature paleo-reconstructions. In order to study the intensity of the PD processes we set up a series of laboratory experiments. In this paper we describe in detail the experimental technique and briefly overview preliminary results. It is shown that the PD modifications in the upper layer of snow thickness are noticeably strong even under such a low temperature as −35°C (the value typical for the Central Antarctic summer). It is demonstrated that the PD isotopic changes in snow can be approximated as a linear function of the relative mass loss due to snow sublimation. Possible applications for improving the isotope-temperature paleo-reconstructions are shortly discussed.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...