ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-08-05
    Description: Many flow and transport phenomena, ranging from delayed storage in pumping tests to tailing in river or aquifer tracer breakthrough curves or slow kinetics in reactive transport, display non-equilibrium (NE) behavior. These phenomena are usually modeled by non-local in time formulations, such as multi-porosity, multiple processes non equilibrium, continuous time random walk, memory functions, integro-differential equations, fractional derivatives or multi-rate mass transfer (MRMT), among others. We present a MRMT formulation that can be used to represent all these models of non equilibrium. The formulation can be extended to non-linear phenomena. Here, we develop an algorithm for linear mass transfer, which is accurate, computationally inexpensive and easy to implement in existing groundwater or river flow and transport codes. We illustrate this approach by application to published data involving NE groundwater flow and solute transport in rivers and aquifers.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-22
    Description: Atmospheric circulation models predict an irrigation-rainfall feedback. However, actual field evidences for local evaporation recycling (moisture feedback) are weak. We present strong field evidence for an increase in rainfall at the mountains located downwind of irrigated zones. We chose two regions, located in semiarid southern Spain, where irrigation started at a well defined date, and we analyzed rainfall statistics before and after the beginning of irrigation. Analyzed statistics include the variation of (1) mean rainfall Δ P, (2) ratio of monthly precipitation to annual precipitation Δ r, and (3) number of months with noticeable rainfall episodes Δ Pmin after a shifting from unirrigated to irrigated conditions. All of them show statistically significant increases. Δ P and Δ r show larger and more statistically significant variations in June and July than in August. They also tend to increase with the annual volume of water applied in the neighbouring upwind irrigation lands. Increases in Δ Pmin are statistically significant during the whole summer. That is, the number of noticeable rainfall events displays a relevant increase after irrigation. In fact, it is this number, rather than sporadic large rainfall episodes what makes the summers wetter. The increase in rainfall, while statistically significant, is distributed over a broad region, so that it is of little relevance from a water resources perspective, although it may enhance vegetation yield.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-10-27
    Description: Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, ...). The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i) Identification of potential recharge sources, (ii) Selection of tracers, (iii) Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv) Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%), the sewage network losses (30%), rainfall, concentrated in the non-urbanized areas (17%), from runoff infiltration (20%), and the Besòs River (11%). Regarding species, halogens (chloride, fluoride and bromide), sulfate, total nitrogen, and stable isotopes (18O, 2H, and 34S) behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-04
    Description: Thermal, suction and osmotic gradients interact during evaporation from a salty soil. Vapor fluxes become the main water flow mechanism under very dry conditions. A coupled nonisothermal multiphase flow and reactive transport model was developed to study mass and energy transfer mechanisms during an evaporation experiment from a sand column. Very dry and hot conditions, including the formation of a salt crust, necessitate the modification of the retention curve to represent oven dry conditions. Experimental observations (volumetric water content, temperature and concentration profiles) were satisfactorily reproduced using mostly independently measured parameters, which suggests that the model can be used to assess the underlying processes. Results show that evaporation concentrates at a very narrow front and is controlled by heat flow, and limited by salinity and liquid and vapor fluxes. The front divides the soil into a dry and saline portion above and a moist and diluted portion below. Vapor diffusses not only upwards but also downwards from the evaporation front, as dictated by temperature gradients. Condensation of this downward flux causes dilution, so that salt concentration is minimum and lower than the initial one, just beneath the evaporation front. While this result is consistent with observations, it required adopting a vapor diffusion enhancement factor of 8.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-03-17
    Description: Many flow and transport phenomena, ranging from delayed storage observed in pumping tests to tailing in river or aquifer tracer breakthrough curves, display non-equilibrium behavior. Usually, they are modeled by non-local in time formulations, such as multi-porosity, multiple processes non equilibrium, continuous time random walk, memory functions, integro-differential equations, fractional derivatives or multi-rate mass transfer (MRMT), among others. We develop a MRMT algorithm that can be used to represent all these formulations. The method is accurate, computationally inexpensive and easy to implement in groundwater or river flow and transport codes. In fact, we present a module that can be linked to existing programs with minimal programming effort. Its accuracy is verified by comparison with existing solutions.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-04-22
    Description: Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, ...). The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i) Identification of potential recharge sources, (ii) Selection of tracers, (iii) Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv) Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%), the sewage network losses (30%), rainfall, concentrated in the non-urbanized areas (17%), from runoff infiltration (20%), and the Besòs River (11%). Regarding species, halogens (chloride, fluoride and bromide), sulfate, total nitrogen, and stable isotopes (18O2H, and 34S) behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-01-18
    Description: Thermal, suction and osmotic gradients interact during evaporation from a salty soil. Vapor fluxes become the main water flow mechanism under very dry conditions. A coupled nonisothermal multiphase flow and a reactive transport model of a salty sand soil was developed to study such an intricate system. The model was calibrated with data from an evaporation experiment (volumetric water content, temperature and concentration). The retention curve and relative permeability functions were modified to simulate oven dry conditions. Experimental observations were satisfactorily reproduced, which suggests that the model can be used to assess the underlying processes. Results show that evaporation is controlled by heat, and limited by salinity and liquid and vapor fluxes. Below evaporation front vapor flows downwards controlled by temperature gradient and thus generates a dilution. Vapor diffusion and dilution are strongly influenced by heat boundary conditions. Gas diffusion plays a major role in the magnitude of vapor fluxes.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-25
    Description: Geological heterogeneity enhances spreading of solutes, and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through Heterogeneous Porous Media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the Multi-Rate Mass Transfer (MRMT) to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, non-dispersive mixing cannot.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-05-20
    Description: Atmospheric circulation models predict an irrigation-rainfall feedback. However, actual field evidences are very weak. We present strong field evidence about an increase in rainfall at the mountains located downwind of irrigated zones. We chose two regions, located in semiarid southern Spain, where irrigation started at a well defined date, and we analyzed rainfall statistics before and after the beginning of irrigation. Analyzed statistics include the variation of (1) mean rainfall Δ P, (2) ratio of monthly precipitation to annual precipitation Δ r, and (3) number of months with minimum rainfall episodes Δ Pmin after a transition period from unirrigated to irrigated conditions. All of them show statistically significant increases. Δ P and Δ r show larger and more statistically significant variations in June and July. Their variation is proportional to the mean annual water volume applied in the neighboring upwind irrigation lands. Variations in Δ Pmin are statistically significant in the whole summer. That is, the number of months with some rain displays a relevant increase after irrigation. However, increase in rainfall while statistically significant is distributed over a broad region, so that it is of little relevance from a water resources perspective. The joint increment in Δ P and Δ Pmin after the irrigation transition period denotes a net increase in the number of months having a minimum cumulated precipitation in summer.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...