ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-23
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-10-27
    Description: We report experimental observations of turbulent flow with spherical particles in a square duct. Three particle sizes, namely 2H/dp=40, 16 and 9 (2H being the duct full height and dp being the particle diameter), are investigated. The particles are nearly neutrally buoyant with a density ratio of 1.0035 and 1.01 with respect to the suspending fluid. Refractive index matched-particle image velocimetry (RIM-PIV) is used for fluid velocity measurement even at the highest particle volume fraction (20%) and particle tracking velocimetry (PTV) for the particle velocity statistics for the flows seeded with particles of the two largest sizes, whereas only pressure measurements are reported for the smallest particles. Settling effects are seen at the lowest bulk Reynolds number Re2H ≈ 000, whereas, at the highest Re2H ≈, particles are in almost full suspension. The friction factor of the suspensions is found to be significantly larger than that of single-phase duct flow at the lower Re2H investigated; however, the difference decreases when increasing the flow rate and the total drag approaches the values of the single-phase flow at the higher Reynolds number considered, Re2H=27 000. The pressure drop is found to decrease with the particle diameter for volume fractions lower than φ=10% for nearly all Re2H investigated. However, at the highest volume fraction φ=10%, we report a peculiar non-monotonic behaviour: the pressure drop first decreases and then increases with increasing particle size. The decrease of the turbulent drag with particle size at the lowest volume fractions is related to an attenuation of the turbulence. The drag increase for the two largest particle sizes at φ=10%, however, occurs despite this large reduction of the turbulent stresses, and it is therefore due to significant particle-induced stresses. At the lowest Reynolds number, the particles reside mostly in the bottom half of the duct, where the mean velocity significantly decreases; the flow is similar to that in a moving porous bed near the bottom wall and to turbulent duct flow with low particle concentration near the top wall. © 2018 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-05
    Description: We study turbulent channel flow of a binary mixture of finite-sized neutrally buoyant rigid particles by means of interface-resolved direct numerical simulations. We fix the bulk Reynolds number and total solid volume fraction, Re b = 5600 and φ = 20 %, and vary the relative fraction of small and large particles. The binary mixture consists of particles of two different sizes, 2h=d l D 20 and 2h=d s D 30 where h is the half-channel height and d l and d s the diameters of the large and small particles. While the particulate flow statistics exhibit a significant alteration of the mean velocity profile and turbulent fluctuations with respect to the unladen flow, the differences between the mono-disperse and bi-disperse cases are small. However, we observe a clear segregation of small particles at the wall in binary mixtures, which affects the dynamics of the near-wall region and thus the overall drag. This results in a higher drag in suspensions with a larger number of large particles. As regards bi-disperse effects on the particle dynamics, a non-monotonic variation of the particle dispersion in the spanwise (homogeneous) direction is observed when increasing the percentage of small/large particles. Finally, we note that particles of the same size tend to cluster more at contact whereas the dynamics of the large particles gives the highest collision kernels due to a higher approaching speed. © 2017 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-22
    Description: We use interface-resolved numerical simulations to study finite-size effects in turbulent channel flow of neutrally buoyant spheres. Two cases with particle sizes differing by a factor of two, at the same solid volume fraction of 20 % and bulk Reynolds number are considered. These are complemented with two reference single-phase flows: the unladen case, and the flow of a Newtonian fluid with the effective suspension viscosity of the same mixture in the laminar regime. As recently highlighted in Costa et al. (Phys. Rev. Lett., vol. 117, 2016, 134501), a particle–wall layer is responsible for deviations of the mesoscale-averaged statistics from what is observed in the continuum limit where the suspension is modelled as a Newtonian fluid with (higher) effective viscosity. Here we investigate in detail the fluid and particle dynamics inside this layer and in the bulk. In the particle–wall layer, the near-wall inhomogeneity has an influence on the suspension microstructure over a distance proportional to the particle size. In this layer, particles have a significant (apparent) slip velocity that is reflected in the distribution of wall shear stresses. This is characterized by extreme events (both much higher and much lower than the mean). Based on these observations we provide a scaling for the particle-to-fluid apparent slip velocity as a function of the flow parameters. We also extend the scaling laws in Costa et al. (Phys. Rev. Lett., vol. 117, 2016, 134501) to second-order Eulerian statistics in the homogeneous suspension region away from the wall. The results show that finite-size effects in the bulk of the channel become important for larger particles, while negligible for lower-order statistics and smaller particles. Finally, we study the particle dynamics along the wall-normal direction. Our results suggest that single-point dispersion is dominated by particle–turbulence (and not particle–particle) interactions, while differences in two-point dispersion and collisional dynamics are consistent with a picture of shear-driven interactions. © 2018 Cambridge University Press
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-29
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-03-25
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...