ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-13
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-10-10
    Description: Periodic axial motion of the inner cylinder in Taylor Couette flow is used to delay transition to Taylor vortices. The outer cylinder is fixed. The marginal stability diagram of Taylor-Couette flow with simultaneous periodic axial motion of the inner cylinder is determined using flow visualization. For the range of parameters studied, the degree of enhanced stability is found to be greater than that predicted by Hu & Kelly (1995), and differences in the scaling with axial Reynolds number are found. The discrepancies are attributed to essential differences between the base flow in the open system considered by Hu & Kelly, where mass is conserved over one period of oscillation, and the base flow in the enclosed experimental apparatus, where mass is conserved at all sections at all times.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-09-01
    Description: The stability of an equilibrium system of two drops suspended from circular holes in a horizontal plate is examined. The drop surfaces are the disconnected axisymmetric surfaces pinned to the edges of the holes. The holes lie in the same horizontal plane and the two drops are connected by a liquid layer that lies above the plate. The total liquid volume is constant. For identical pendant drops pinned to holes of equal radii, axisymmetric perturbations are always the most dangerous. The stability region for two identical drops differs considerably from that for a solitary pendant drop. A bifurcation analysis shows that the loss of stability leads to a continuous transition from a critical system of identical drops to a stable system of axisymmetric non-identical drops. With increasing total protruded liquid volume this system of non-identical drops reaches its own collective stability limit (to axisymmetric perturbations) which gives rise to dripping or streaming from the holes. Critical volumes and heights for non-identical drops have been calculated as functions of the dimensionless hole radius (associated with the Bond number). For unequal hole radii, there are three intervals of the larger dimensionless hole radius, R10, with qualitatively different bifurcation patterns which in turn can depend on the smaller dimensionless hole radius, R10. Loss of stability may occur when the drop suspended from the larger hole reaches its stability limit (to non-axisymmetric perturbations) as a solitary drop or when the system reaches the collective stability limit (to axisymmetric perturbations). Typical situations are illustrated for selected values of R10, and then the basic characteristics of the stability for a dense set of R10 are presented. © 2006 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-11-25
    Description: To understand the fluid dynamics of a biologically inspired unsteady low-aspect-ratio propulsor, unsteady pressure distributions were measured and compared with time-averaged thrust performance and wake visualizations. The experiments were performed on rigid rectangular panels with different aspect ratios, pitching in a uniform flow. Panel aspect ratio and pitching amplitude were shown to affect the magnitude and time dependence of the pressure distribution on the panel surface, the vorticity generation on the panel, and thrust production. A new scaling is proposed that includes these parameters and collapses the oscillating pressure magnitude and the thrust coefficient. © 2008 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-11-25
    Description: Two-point hot-wire measurements of streamwise velocity were performed in the logarithmic and wake regions of turbulent pipe flow for Reynolds numbers, based on pipe diameter, ranging from 7.6 × 104 to 8.3 × 106 at four wall-normal positions with azimuthal probe separation. The azimuthal correlations were found to be consistent with the presence of very large-scale coherent regions of low-wavenumber, low-momentum fluid observed in previous studies of wall-bounded flows and were found to be independent of changing Reynolds number and surface roughness effects. At the edge of the logarithmic layer the azimuthal scale determined from the correlations was found to be similar to that observed for channel flows but larger than that observed for boundary layers, inconsistent with the concept of a universal logarithmic region. As the wall-normal position increased outside the logarithmic layer, there was a decrease in azimuthal scale relative to that of channel flow. Using cross-spectral analysis, high-wavenumber motion was found to grow azimuthally with wall-normal distance at a faster rate than the low-wavenumber motions. © 2008 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1987-02-01
    Description: Experiments were performed to investigate the supersonic flow of a turbulent boundary layer over short regions of concave surface curvature. Upstream of each curved wall, the free-stream Mach number was 2.87, and the incoming boundary layer was typical of a two-dimensional, zero-pressure-gradient, high-Reynolds-number flow. Two different curvatures were used, with radii of curvature equal to 10 and 50 initial boundary-layer thicknesses (Models I and II, respectively). The turning angle was 8° in each case. As the boundary layer passed through the curved region, it experienced a strong adverse pressure gradient, as well as the destabilizing influences of bulk compression and concave curvature. Downstream of the curved walls, the flow relaxed on a short plane wall. The mean and turbulent field for each flow was investigated, using normal and inclined hot wires to measure the turbulent fluctuations. Wherever possible, the results were compared with those from a corresponding 8° ramp. The ramp and Model I exhibited a very similar behaviour: turbulence levels increased significantly, and there was a marked increase in structural parameters such as the stress ratio —u'v'/u'— and the length-and timescales of the turbulent motions. Model II behaved quite differently: although the turbulence levels increased, structural parameters were essentially unchanged. The similarities between the ramp and Model I results suggest that the perturbation in both cases is ‘ rapid ’ in that the perturbation can be described in terms of total strains rather than local strains. In contrast, the flow in Model II is sensitive to the local variations in the strain rate. © 1987, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-11-25
    Description: Experiments were conducted to investigate the response of a high-Reynolds-number turbulent boundary layer in a supersonic flow to the perturbation presented by a forward-facing ramp. Two ramps were used: one with sharp corners, the other with rounded corners having radii of curvature equal to 15 initial boundary layer thicknesses. The flow was turned through 20° in each of the compressions and expansions. Hence, there was no net change in the flow direction over the ramps and only a small change in free-stream conditions due to the entropy increase across relatively weak shocks. The two experiments gave similar results. In the middle of the relaxing boundary layer, the streamwise Reynolds stress undershot the undisturbed levels and exhibited a response similar to that observed in subsonic boundary layer flows recovering from an impulse of streamline curvature (Smits, Young & Bradshaw 1979b). The turbulent shear stress vanished throughout most of the boundary layer, and an overall destruction of the turbulence production mechanisms was apparent as the boundary layer exhibited a slow recovery.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-10-25
    Description: Measurements of the mean velocity profile and pressure drop were performed in a fully developed, smooth pipe flow for Reynolds numbers from 31 × 103 to 35 × 106. Analysis of the mean velocity profiles indicates two overlap regions: a power law for 60 〈 y+ 〈 500 or y+ 〈 0.15R+, the outer limit depending on whether the Kármán number R+ is greater or less than 9 × 103; and a log law for 600 〈 y+ 〈 0.07R+. The log law is only evident if the Reynolds number is greater than approximately 400 × 103 (R+ 〉 9 × 103). Von Kármán's constant was shown to be 0.436 which is consistent with the friction factor data and the mean velocity profiles for 600 〈 y+ 〈 0.07R+, and the additive constant was shown to be 6.15 when the log law is expressed in inner scaling variables. A new theory is developed to explain the scaling in both overlap regions. This theory requires a velocity scale for the outer region such that the ratio of the outer velocity scale to the inner velocity scale (the friction velocity) is a function of Reynolds number at low Reynolds numbers, and approaches a constant value at high Reynolds numbers. A reasonable candidate for the outer velocity scale is the velocity deficit in the pipe, UcL - U, which is a true outer velocity scale, in contrast to the friction velocity which is a velocity scale associated with the near-wall region which is 'impressed' on the outer region. The proposed velocity scale was used to normalize the velocity profiles in the outer region and was found to give significantly better agreement between different Reynolds numbers than the friction velocity. The friction factor data at high Reynolds numbers were found to be significantly larger (〉 5%) than those predicted by Prandtl's relation. A new friction factor relation is proposed which is within ± 1.2% of the data for Reynolds numbers between 10 × 103 and 35 × 106, and includes a term to account for the near-wall velocity profile.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-07-23
    Description: A low-Reynolds-number zero-pressure-gradient incompressible turbulent boundary layer was investigated using a volumetric imaging technique. The Reynolds number based on momentum thickness was 700. The flow was tagged with a passive scalar from two spanwise dye slots to distinguish between fluid motions originating in the inner and outer portions of the boundary layer. The resulting volumetric scalar field was interrogated using a laser sheet scanner developed for this study. Two- and three-dimensional time-dependent visualizations of a 50 volume time series are presented (equivalent to 17δ in length). In the outer portion of the boundary layer, scalar structures were observed to lie along lines in the (x, z)-plane, inclined to the streamwise (x-)direction in the range ±50°. The ejection of brightly dyed fluid packets from the near-wall region was observed to be spatially organized, and related to the passage of the large-scale scalar structures. © 2004 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-07-01
    Description: A variation of the classical Taylor-Couette system is studied where, with the outer cylinder stationary, the inner cylinder rotates at constant angular velocity while executing harmonic oscillations in the axial direction. Experiments reveal a Hopf (Neimark-Sacker) bifurcation from a limit cycle to a torus. Alternating bands of frequency-locked and quasi-periodic flow are observed and identified. Power spectral plots and (delay reconstructed) Poincaré maps are used to characterize the temporal dynamics. Results are presented on the rotation number variation across parameter space, the shape and growth of frequency-locked resonance horns, and the spatial development of the flow considerably beyond the primary transition surface. © 2006 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...