ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2006-11-01
    Beschreibung: NFAT is a family of highly phosphorylated proteins residing in the cytoplasm of resting cells. Upon dephosphorylation by the Ca2+/calmodulin-dependent serine phosphatase calcineurin, NFAT translocates to the nucleus, where it induces the transcription of a large number of genes necessary for a productive immune response. NFAT signalling has also been implicated in lymphocyte homeostasis and its deregulation has been suggested to be involved in the pathogenesis of different malignancies. A recent immunohistochemical evaluation of approximately 300 Non-Hodgkin’s Lymphoma biopsy samples showed overexpression of NFAT2 in the majority of specimens with strong nuclear translocation in certain histologic subtypes (DLBCL, Burkitt’s Lymphoma) presumably reflecting activation of the NFAT pathway as part of their pathogenesis. Other recent studies have shown that NFAT activation leads to increased expression of different cell survival factors (CD154, BLyS) in several lymphoma subtypes (DLBCL, MCL). To study the role of constitutive activation of the NFAT pathway on lymphomagenesis, we generated several hyperactivable NFAT mutants which will be used to generate transgenic mice expressing the mutant proteins from the ROSA26 locus. Here, we present the in vitro characterization of these hyperactivable NFAT proteins in cell lines and primary lymphocytes. The major docking site for calcineurin is located at the N terminus of the NFAT regulatory domain and has the consensus sequence PxIxIT (e.g. SPRIEIT in NFAT1 and NFAT2). Substitution of the SPRIEIT sequence of NFAT with HPVIVIT, a higher-affinity version obtained by peptide selection, increases the basal calcineurin sensitivity of the protein significantly. Similarly, a major kinase for NFAT is CK1, and mutation of the CK1 docking site (FSILF to ASILA in NFAT1, FDFEF to ADAEA in NFAT2) also leads to partial nuclear localization of NFAT proteins by decreasing rephosphorylation and nuclear export. In the current analysis we compared the different hyperactivable NFAT proteins with respect to dephosphorylation status and nuclear translocation using western blotting and immunocytochemistry. Whereas the wildtype NFAT protein was entirely localized in the cytoplasm and completely phosphorylated under resting conditions, we observed an increasing degree of nuclear translocation and dephosphorylation for the different mutant proteins (ASILA 20%, VIVIT 30–40%, ASILA-VIVIT 50–70%). This system will allow us to study the impact of different levels of NFAT activation on the pathogenesis of lymphomas in vivo.
    Print ISSN: 0006-4971
    Digitale ISSN: 1528-0020
    Thema: Biologie , Medizin
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 1998-04-01
    Beschreibung: Transcription factors of the NFAT (nuclear factor of activated T cells) family regulate the expression of many genes encoding immunoregulatory cytokines and cell surface proteins during the immune response. The NFAT protein NFAT1 (NFATp) is expressed and functional in T cells, B cells, mast cells, and natural killer cells. Here we report a detailed analysis of the enhanced eosinophil responses of NFAT1-deficient mice, observed in an in vivo model of allergic inflammation. In addition to the pleural eosinophilia described previously, NFAT1−/− mice that have been sensitized with antigen display a significant increase, relative to wild-type mice, in the numbers of eosinophils in bone marrow and peripheral blood. After restimulation with antigen in vitro, antigen-responsive T cells from the draining lymph nodes of NFAT1−/− mice show increased expression of mRNA encoding the Th2 cytokines interleukin-4 (IL-4), IL-5, and IL-13. Consistent with this finding, there is a pronounced increase in the levels of IL-5 and IL-13 in the pleural cavities of sensitized NFAT1−/− mice after allergen challenge in vivo. Furthermore, development of eosinophilia depends on overexpression of IL-4 and IL-5, because it is strongly inhibited by administration of neutralizing antibodies to either of these cytokines. These results indicate that NFAT1-deficient mice are prone to develop a classically allergic phenotype characterized by eosinophilia and increased production of Th2 cytokines. Thus, the presence of NFAT1 might inhibit the allergic response, perhaps by interfering with the development of Th2 immune responses, and the lack or dysfunction of NFAT1 could potentially underlie certain cases of atopic disease.
    Print ISSN: 0006-4971
    Digitale ISSN: 1528-0020
    Thema: Biologie , Medizin
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2001-09-01
    Beschreibung: Transcription factors of the nuclear factor of activated T cells (NFAT) family are thought to regulate the expression of a variety of inducible genes such as interleukin-2 (IL-2), IL-4, and tumor necrosis factor-α. However, it remains unresolved whether NFAT proteins play a role in regulating transcription of the interferon- γ (IFN-γ) gene. Here it is shown that the transcription factor NFAT1 (NFATc2) is a major regulator of IFN-γ production in vivo. Compared with T cells expressing NFAT1, T cells lacking NFAT1 display a substantial IL-4–independent defect in expression of IFN-γ mRNA and protein. Reduced IFN-γ production by NFAT1−/−× IL-4−/− T cells is observed after primary in vitro stimulation of naive CD4+ T cells, is conserved through at least 2 rounds of T-helper cell differentiation, and occurs by a cell-intrinsic mechanism that does not depend on overexpression of the Th2-specific factors GATA-3 and c-Maf. Concomitantly, NFAT1−/−× IL-4−/− mice show increased susceptibility to infection with the intracellular parasiteLeishmania major. Moreover, IFN-γ production in a murine T-cell clone is sensitive to the selective peptide inhibitor of NFAT, VIVIT. These results suggest that IFN-γ production by T cells is regulated by NFAT1, most likely at the level of gene transcription.
    Print ISSN: 0006-4971
    Digitale ISSN: 1528-0020
    Thema: Biologie , Medizin
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 1998-04-01
    Beschreibung: Transcription factors of the NFAT (nuclear factor of activated T cells) family regulate the expression of many genes encoding immunoregulatory cytokines and cell surface proteins during the immune response. The NFAT protein NFAT1 (NFATp) is expressed and functional in T cells, B cells, mast cells, and natural killer cells. Here we report a detailed analysis of the enhanced eosinophil responses of NFAT1-deficient mice, observed in an in vivo model of allergic inflammation. In addition to the pleural eosinophilia described previously, NFAT1−/− mice that have been sensitized with antigen display a significant increase, relative to wild-type mice, in the numbers of eosinophils in bone marrow and peripheral blood. After restimulation with antigen in vitro, antigen-responsive T cells from the draining lymph nodes of NFAT1−/− mice show increased expression of mRNA encoding the Th2 cytokines interleukin-4 (IL-4), IL-5, and IL-13. Consistent with this finding, there is a pronounced increase in the levels of IL-5 and IL-13 in the pleural cavities of sensitized NFAT1−/− mice after allergen challenge in vivo. Furthermore, development of eosinophilia depends on overexpression of IL-4 and IL-5, because it is strongly inhibited by administration of neutralizing antibodies to either of these cytokines. These results indicate that NFAT1-deficient mice are prone to develop a classically allergic phenotype characterized by eosinophilia and increased production of Th2 cytokines. Thus, the presence of NFAT1 might inhibit the allergic response, perhaps by interfering with the development of Th2 immune responses, and the lack or dysfunction of NFAT1 could potentially underlie certain cases of atopic disease.
    Print ISSN: 0006-4971
    Digitale ISSN: 1528-0020
    Thema: Biologie , Medizin
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2007-11-16
    Beschreibung: NFAT is a family of highly phosphorylated proteins residing in the cytoplasm of resting cells. Upon dephosphorylation by calcineurin, NFAT translocates to the nucleus, where it orchestrates several developmental programs, including those of the immune, cardiovascular and central nervous systems. NFAT is rephosphorylated and inactivated by different kinases (CK1, GSK-3, DYRK). The major docking site for calcineurin is located at the N terminus of the NFAT regulatory domain and has the consensus sequence PxIxIT (SPRIEIT in NFAT1). Substitution of the SPRIEIT sequence with HPVIVIT increases the basal calcineurin sensitivity of the protein significantly. Similarly, mutation of the CK1 docking site from FSILF to ASILA leads to partial nuclear localization by decreasing rephosphorylation and nuclear export. To assess the impact of hyperactivable NFAT mutants on activation kinetics and signal responsiveness, we retrovirally transduced T cells from NFAT1−/− mice with contructs expressing wild type NFAT1, NFAT1-ASILA, NFAT1-HPVIVIT or NFAT1-ASILA-HPVIVIT. Analysis by western blotting and immunocytochemistry revealed, that the wild type protein was entirely localized in the cytoplasm and completely phosphorylated under resting conditions, whereas the hyperactivable mutants exhibited an increasing degree of nuclear translocation and dephosphorylation (ASILA 20%, HPVIVIT 30–40%, ASILA-HPVIVIT 50–70%). Upon stimulation with PMA and ionomycin, the hyperactivable mutants exhibited an incremental acceleration of nuclear translocation and delay of nuclear export as compared to the wild type protein. Furthermore, T cells expressing hyperactivable NFAT proteins exhibited significantly higher expression rates of different cytokines (IL-2, TNF-α, IFN-γ) upon stimulation with low doses of ionomycin documenting their hyperresponsiveness and biological activity. To provide a new tool for the analysis of the calcineurin-NFAT pathway in vivo and to assess the effect of modulating the affinity of signaling molecules for their upstream regulators, which are consistently kept at low to moderate affinity during evolution, we subsequently generated transgenic mice conditionally expressing different hyperactivable NFAT1 mutants from the ROSA26 locus (NFAT1-HPVIVIT, NFAT1-ASILA-HPVIVIT). Transgene expression in the T cell lineage was achieved by breeding the ROSA26 transgenic mice to CD4-Cre mice, which express the Cre recombinase under the control of the CD4 promoter. CD4 and CD8 T cells from these mice showed significant hyperactivability as assessed by accelerated nuclear translocation and delayed nuclear export of NFAT and substantially increased cytokine expression upon stimulation. Expression of the hyperactivable NFAT proteins early in the germline was achieved by breeding the ROSA26 mice to Cre-Del mice, which express the Cre recombinase under the control of the ACE promoter. While breeding of ROSA26-YFP control mice to Cre-Del mice resulted in transgene expression in all T and B cells, expression of hyperactivable NFAT proteins early in the germline resulted in incremental mosaicism in T and B cells (70% transgene expression in NFAT1-HPVIVIT and 20–30% transgene expression in NFAT1-ASILA-HPVIVIT). This data demonstrate that hyperactivable NFAT1 proteins result in a selective disadvantage for the expressing cells in embryonic development and provide a potential explanation why evolution chose to keep the respective docking sites at moderate affinity.
    Print ISSN: 0006-4971
    Digitale ISSN: 1528-0020
    Thema: Biologie , Medizin
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2014-12-06
    Beschreibung: NFAT is a family of highly phosphorylated proteins residing in the cytoplasm of resting cells. Upon dephosphorylation by calcineurin, NFAT proteins translocate to the nucleus where they orchestrate developmental and activation programs in diverse cell types. CLL is a clonal disorder of mature B cells characterized by the expression of CD19, CD23 and CD5. With respect to prognosis, it constitutes a heterogeneous disease with some patients exhibiting an indolent course for many years and others progressing rapidly and requiring early treatment. A defined subgroup of patients shows enhanced responsiveness to stimulation of the B cell receptor (BCR) complex and more aggressive disease. In contrast, another subset of CLL patients with more indolent course is characterized by an anergic B cell phenotype referring to B cell unresponsiveness to IgM ligation and essential lack of phosphotyrosine induction and calcium flux. Here, we analyzed the role of NFAT2 in the pathogenesis of B-CLL and in anergy induction in CLL cells. For this purpose, we generated conditional CD19-Cre NFAT2 knock out mice, which exhibit NFAT2 deletion limited to the B cell lineage. To investigate the role of NFAT2 in the pathogenesis of CLL, we used the Eµ-TCL1 transgenic mouse model. TCL1 transgenic mice develop a human-like CLL at the age of approximately 14 weeks to which the animals eventually succumb at an average age of 10 months. We generated TCL1+NFAT2 ko mice with TCL1 transgenic mice without an NFAT2 deletion serving as controls. To identify novel NFAT2 target genes in CLL cells, we also performed a comparative gene expression analysis on CLL cells with intact NFAT2 expression and on CLL cells with NFAT2 deletion using affymetrix microarrays. In order to asses the anergic phenotype in CLL cells and the role of NFAT2 in its induction, we performed Ca2+ mobilization assays using a flow cytometric approach and performed Western Blots for multiple downstream signaling molecules. Mice with NFAT2 ko exhibited a significantly more aggressive disease course with accelerated accumulation of CD5+CD19+ CLL cells in different organs, significantly higher proliferation rates and a dramatically reduced life expectancy (200 vs. 325 days) as compared to TCL1 control animals. To identify NFAT2 target genes responsible for the observed alterations in the disease phenotype, we subsequently performed a gene expression analysis with CLL cells from both leukemic cohorts. Here, we detected a substantially altered expression profile of genes associated with B cell anergy in the TCL1+NFAT2 ko mice. The vast majority of these genes was expressed significantly less in the absence of NFAT2 with Lck, Pacsin1 and the E3 ligase Cbl representing the biggest hits. To further delineate the anergic phenotype and the role of NFAT2 in its induction, we subsequently performed Ca2+ mobilization assays. While anergic CLL cells from TCL1 mice exhibited an unresponsive phenotype with respect to Ca2+ flux upon IgM ligation, TCL1+NFAT2 ko mice showed an entirely normal capacity to mobilize intracellular Ca2+. Furthermore, IgM stimulation did not activate normal phosphotyrosine induction (phosphorylation of AKT and ERK kinases) in TCL1 mice while NAFT2-deficient CLL cells exhibited an unremarkable activation pattern with respect to AKT and ERK as assessed by Western Blotting. NFAT2-deficient CLL cells on the contrary exhibited compromised activation of the anergy regulator Lck as assessed by Y394 phosphorylation. Bypassing the BCR by antigen-independent stimulation with CD40 and LPS demonstrated slightly increased proliferation in anergic TCL1 CLL cells while NFAT2-deficient CLL cells exhibited massive proliferation. In summary, our data provide strong evidence that genetic loss of NFAT2 leads to more aggressive disease in CLL which is associated with the loss of the anergic phenotype. We could show that NFAT2 controls the expression of several important anergy-associated genes and identified Lck as a critical target of NFAT2 in this context. Taken together, our data demonstrate that the NFAT2-Lck axis plays an essential role in the pathogenesis of CLL and implicate it as a potential target in its treatment. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Digitale ISSN: 1528-0020
    Thema: Biologie , Medizin
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2016-12-02
    Beschreibung: NFAT2 is a highly phosphorylated transcription factor which regulates developmental and activation programs in diverse cell types. We and others have previously described a significant overexpression of NFAT2 in CLL cells as compared to physiological B cells. Three major isoforms of NFAT2 with different regulatory properties have been described (700aa short isoform, 800aa intermediate isoform, 900 aa long isoform). Here, we analyzed the role of different NFAT2 transcripts in CLL with respect to disease phenotype and cell proliferation. We investigated primary samples from CLL patients (n=30) for their expression profile of different NFAT2 isoforms using RT-PCR. Applying an shRNA approach, we generated stable knock-down cells of the CLL cell line MEC-1 for the long and intermediate isoforms and for the entire NFAT2 gene resulting in the complete ablation of all isoforms. The proliferation properties of the different MEC-1 cell lines was subsequently assessed in xeno-transplant experiments into NSG mice. While physiological B cells express comparable levels of the short and intermediate/long isoforms, we could detect a five fold overexpression of the intermediate/long isoforms in primary CLL samples. To further analyze the differential regulation of the different NFAT2 transcripts on tumor cell proliferation and cell cycle regulation, we injected NSG mice with MEC-1 cells with intact NFAT2 (n=6), MEC-1 cells with a knock-down of the intermediate and long isoforms (n=6) and MEC-1 cells with a complete NFAT2 knock-down (n=6). MEC-1 cells with selective ablation of the intermediate and long NFAT2 isoforms grew significantly faster in NSG mice than MEC-1 cells with intact NFAT2 expression or MEC-1 cells with a complete NFAT2 knock-down. MEC-1 cells selectively lacking the intermediate and long isoforms led to accelerated tumor proliferation upon subcutaneous injection. Cell cycle analysis as assessed by flow cytometry showed a significantly increased number of cells in the G1/S-Phase for the group without expression of the short isoform, while the group with complete NFAT knock-down exhibited a compromised growth pattern as compared to wild-type MEC-1 cells. In summary, our data demonstrate that genetic loss of the intermediate and long isoforms of NFAT2 leads to CLL acceleration Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Digitale ISSN: 1528-0020
    Thema: Biologie , Medizin
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2011-11-18
    Beschreibung: Abstract 462 In myelodysplastic syndrome (MDS), mutations in genes affecting epigenetic regulation constitute a link between genomic and epigenetic instability. Previously, we and others described mutations in TET2, coding for a 2-oxyglutarate-dependent methylcytosine dioxygenase, which converts 5-methycytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). Subsequently, dysfunction of wild type TET2 was mechanistically linked to neomorphic IDH mutations which deplete 2-oxyglutarate and produce a competitive inhibitor, 2-hydroxyglutarate. Previously, we established analytic tools to indirectly quantify 5-hmC content in leukemic genomes: in patients with myeloid malignancies 5-hmC levels are decreased as compared to healthy controls (p=1.8e-09). A decrease in 5-hmC levels correlated with dysfunction of TET2 as a consequence of inactivating hypomorphic mutations. Nevertheless, while in a majority of patients with decreased 5hmC levels TET2 mutations can be found, in a substantial minority of cases no explanation for the 5hmC deficiency has been found; down-modulation of TET2 mRNA and protein expression was absent and mutations in TET1 and TET3 have not been identified. Thus, other currently unidentified proteins may be directly or indirectly (via regulation of TET activity) involved in the deregulation of 5hmC levels in TET2 and IDH1/2-mutation-negative cases with low 5-hmC. To further investigate this issue we first characterized on a molecular levels patients with low 5-hmC using various approaches. SNP-A karyotyping failed to identify recurrent chromosomal defects in these patients that could point towards defects in pathogenic genes involved in the regulation of 5-hmC levels. We also screened 107 MDS patients to correlate of genomic 5-hmC content and the presence of recurrent mutations including IDH1/2, DNMT3A, ASXL1 and RUNX1 genes (as well as TET2). Within these genes, except for an association with TET2 mutations, a positive correlation with low 5-hmC levels was found only for IDH1/2 mutant cases (p=.05, n=5), whereas no correlation has been established for DNMT3A (p=.119, n=12), ASXL1 (p=.434, n=21) and RUNX1 (p=.602, n=22) mutant cases. While TET2 and IDH mutations were rarely seen together (n=1), none of the other studied gene mutations were mutually exclusive with TET2, suggesting contributions of defects in novel yet not identified genes. Several other genes similar to TET or IDH proteins, or hypothetically linked to DNA demethylation pathways could, at least theoretically, affect 5-hmC content, including for instance D2HGDH and the ELP gene family. However, no mutations were identified in these patients, except for identification of yet unknown SNPs in D2HGDH and ELP4 in some patients with unexplained low 5-hmC levels. In addition to the targeted approach we have also applied next generation sequencing technologies and sequenced whole exomes of malignant and non-affected cells (paired-end (2×100) Illumina HiSeq 2000) to identify novel acquired determinants of 5-mC hydroxymethylation in two representative patients. By using a selective algorithm, 18 overlapping potential somatic alterations in these patients were found in genes which could functionally affect 5-hmC content. In addition, several other mutated genes have been identified in each patient; these are being further investigated in other patients with low 5-hmC levels. Sanger sequencing was applied to confirm the presence of previously detected mutations in NF1 and KRAS, as well as all novel mutations, for instance in BRCC3 and SF3B1, in these patients. In sum, our results provide novel insights into the molecular mechanisms underlying MDS pathophysiology and describe the possibility that the TET family enzymes can act together with other putative proteins linked to DNA demethylation pathways. The use of high throughput sequencing technologies increase the probability of identification of novel changes which can be linked to functional consequences in these patients, ultimately furthering the understanding its role in genomic stability in MDS. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Digitale ISSN: 1528-0020
    Thema: Biologie , Medizin
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2013-11-15
    Beschreibung: Chronic Lymphocytic Leukemia (CLL) is a hematological malignancy of mature B cells and constitutes the most common leukemia in adults. It is characterized by a progressive accumulation of clonal B cells, which coexpress CD19, CD23 and CD5. The clinical course of CLL can be predicted by serveral prognostic markers like CD38, ZAP70 and cytogenetic abnormalities. While the treatment of CLL has significantly improved during recent years, it remains an essentially incurable disease and the molecular events that lead to its development are still largely elusive. NFAT is a family of highly phosphorylated transcription factors residing in the cytoplasm of resting cells. Upon dephosphorylation NFAT proteins translocate to the nucleus where they orchestrate developmental and activation programs in diverse cell types. NFAT is inactivated by a network of several kinases. Several recent studies have demonstrated that Ca2+/NFAT signaling is involved in the pathogenesis of a wide array of different tumor types including pancreatic adenocarcinoma, breast cancer and Non Hodgkin´s lymphoma. In this study we investigated the significance of the Ca2+/NFAT signaling pathway in B-CLL. For this purpose, we analyzed CLL cell lines (MEC-1, JVM-3) as well as primary blood samples from patients with CLL (n=30). The analyzed patient population exhibited a representative distribution of age, sex, Binet stage, WBC count, cytogenetics and IGVH mutational status. We detected a profound overexpression of NFAT2 mRNA as well as NFAT2 protein in all CLL samples. Using qRT-PCR we found that CD19+CD5+ CLL cells exhibited an at least three fold overexpression of NFAT2 as compared to CD19+ B cells isolated from healthy donors. In one case, NFAT2 expression in CLL cells was 200 times higher than in the corresponding controls. This profound overexpression of NFAT2 in CLL cells could be confirmed on the protein level using Western Blotting and Immunocytochemistry. We could further demonstrate that even under resting conditions significant amounts of NFAT2 protein had translocated to the nucleus in CLL cells, whereas virtually all NFAT2 was in the cytoplasm in healthy B cells. NFAT2 nuclear translocation could be inhibited using pretreatment with Cyclosporin A demonstrating that this process was still calcineurin-dependent in CLL cells. We could further show that nuclear NFAT2 in CLL cells was able to bind DNA using electrophoretic mobility shift assays (EMSA). To assess the transcriptional activity of NFAT2 in human CLL we determined the expression of the apoptosis regulators OX40L, osteopontin and PD-L2, which we previously identified as NFAT2 target genes in a gene expression analysis with CD19+CD5+ CLL cells from TCL1 transgenic mice with intact NFAT2 and NFAT2 deletion, respectively. Interestingly, qRT-PCR revealed a tremendous reduction of all three target genes in the analyzed CLL samples as compared to control B cells from healthy donors. This is particularly remarkable, since in the TCL1 mouse model we observed a similar reduction of the expression of these genes in CLL cells with NFAT2 ablation. In summary, these results provide strong evidence that the Ca2+/NFAT signaling axis is constitutively activated in CD19+CD5+ CLL cells. Our data suggest that the profound overexpression of NFAT2 in CLL cells leads to its targeting to aberrant genetic loci different from its phsiological target genes resulting in a consecutive knock out phenotype with respect to the expression of the apoptosis regulators OX40, osteopontin and PD-L2 in CLL. Further investigation is therefore warranted to decipher the therapeutic potential of modulating the Ca2+/Calcineurin/NFAT signaling pathway in this disease. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Digitale ISSN: 1528-0020
    Thema: Biologie , Medizin
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2012-11-16
    Beschreibung: Abstract 862 NFAT is a family of highly phosphorylated proteins residing in the cytoplasm of resting cells. Upon dephosphorylation by calcineurin, NFAT proteins translocate to the nucleus where they orchestrate developmental and activation programs in diverse cell types. NFAT is inactivated and relocated to the cytoplasm by a network of several kinases. Although identified originally as a major transcriptional regulator in T cells, it is now clear that NFAT transcription factors also possess important roles in other cells of the hematopoietic system including dendritic cells, mast cells, megakaryocytes and B cells. Several recent studies have demonstrated that Calcineurin/NFAT signaling is involved in the pathogenesis of a wide array of hematological malignancies including diffuse large B cell lymphoma, CLL as well as Burkitt and Burkitt-like lymphomas. Here, we analyzed the role of NFAT2 in the pathogenesis of B-CLL. For this purpose, we generated mice with a conditional NFAT2 knock out allele (NFAT2fl/fl). In order to achieve NFAT2 deletion limited to the B cell lineage, we bred NFAT2fl/fl mice to CD19-Cre mice, in which the Cre recombinase is expressed under the control of the B cell-specific CD19 promoter. To investigate the role of NFAT2 in the pathogenesis of CLL we made use of the Eμ-TCL1 transgenic mouse model in which the TCL1 oncogene is expressed under the control of the Eμ enhancer. TCL1 transgenic mice develop a human-like CLL at the age of approximately 14 weeks to which the animals eventually succumb at an average age of 10 months. To analyze the role of NFAT2 in CLL, we generated mice (n=10) whose B cells exhibited a specific deletion of this transcription factor in addition to their transgenic expression of the TCL1 oncogene (TCL1 CD19-Cre NFAT2fl/fl). TCL1 transgenic mice without an NFAT2 deletion served as controls (n=10). Mice with NFAT2 knock out exhibited a significantly accelerated accumulation of CD5+CD19+ CLL cells as compared to control animals. Flow cytometric analysis at distinct time points showed a tremendous infiltration by CD5+ B cells in the peritoneal cavity, spleen, lymph nodes, liver and bone marrow which was significantly stronger in the NFAT2 ko cohort. Most of the CD5+ B cells in TCL1+NFAT2 ko mice showed high expression of ZAP70 and CD38, whereas TCL1 transgenic mice only demonstrated very few CD5+ B cells with concomitant expression of ZAP70 and CD38. At approximately 26 weeks of age, NFAT2 ko mice showed an approximately 40 fold increased lymphocyte count in the peripheral blood than their litter mate controls (1500/μL vs. 60000/μL). Splenomegaly and lymphatic adenopathy was also significantly increased in the NFAT ko population. Furthermore, NFAT2 ko mice showed a dramatically reduced median survival (200 vs. 325 days) and maximum survival (265 vs. 398 days) in comparison to regular TCL1 transgenic mice. To investigate the effects of an NFAT2 ko on proliferation and apoptosis of CD5+CD19+ CLL cells, we performed in vivo BrdU incorporation assays with subsequent flow cytometric analysis. Interestingly, we could show that CLL cells isolated from spleens, bone marrow and peripheral blood from mice with an NFAT ko at an age of approximately 7 months exhibited significantly higher rates of proliferation than control animals. In summary, our data provide strong evidence that NFAT2 is a critical regulator of CD38 and ZAP70 expression and substantially controls cell cycle progression in CLL cells implicating Ca2+/NFAT signaling as a potential target for the treatment of this disease. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Digitale ISSN: 1528-0020
    Thema: Biologie , Medizin
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...