ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-02
    Description: During cell cycle division Aurora kinases (AURKA and AURKB) participate in the formation and control of mitotic spindle fibers, while, protein isoforms (DIDO1, DIDO2 and DIDO3), derived by alternative splicing of the DIDO gene, assist at the junction of microtubules to kinetochores. Thus, both are relevant to cell cycle maintenance. Interestingly, overexpression (or gain of function) of AURKs or low expression (or loss of function of DIDO) are both associated with centrosomal amplification and chromosomal instability (CIN), leading to aneuploidy. Among hematological diseases with CIN records, chronic lymphocytic leukemia (CLL) can display centrosome amplification and changes in AURKs expression levels leading to aneuploidy. The Despite this, there are no studies evaluating the potential association of these genes with CIN in CLL. By evaluating their gene expression levels in CLL samples from patients with or without chromosomal aberrations, we show that increased levels of AURKA and AURKB and, conversely, reduced levels of DIDO variants, are both significantly associated with chromosomal gains and with increased white blood cell (WBC) counts. Clearly, CLL samples without any cytogenetic abnormality had expression levels similar to samples mostly harboring non-numerical aberrations. The finding that the expression levels of AURKs and DIDO variants are completely opposed, showing a discrete inter-related pattern, led us to investigate the potential regulatory mechanism behind this. Given that other have previously shown that the oncogenic miR-17-92 cluster is significantly upregulated in purified CLL patient cells expressing unmutated IGHV genes (as compared to mutated patient cells), and that miR-17 is expressed at significantly higher levels in unmutated or ZAP-70 high cases (bad prognostic cases generally associated with chromosomal instability), we investigated the potential negative regulation of DIDO variants by microRNAs from this cluster. In addition, based on the already described regulatory mechanism by which AURKA overexpression induces the E2F1-mediated transcription upregulation of the miR-17-92 cluster (with an observed expression correlation of both proteins in cancer specimens); we decided to investigate this regulatory axis in CLL. Notably, we found that all DIDO variants are predicted to be heavily targeted by several miRs of this oncogenic cluster. We show that CLL samples with low DIDO expression, in addition to the already mentioned AURK high levels, displayed significant higher levels of the transcription factor E2F1 and of its transcriptional target, the miR-17-92 primary transcript (MIR17HG). Moreover, by using the NTERA-2 cell line as a model, we show that siRNA knockdown of AURKA (at the transcript and protein level, as confirmed by qPCR and western blot) is accompanied by a striking significant reduction of E2F1 and also of MIR17HG. Furthermore, transfection of NTERA-2 cells with synthetic mimics of the miR-17~92 cluster (namely, miR-19a, miR-20a and miR-92a) results in a clear and significant reduction in the transcript levels of all DIDO variants. Finally, specific siRNA inhibition of the DIDO3 variant (but not the others) led to a significant reduction in the transcript levels of all DIDO variants, indicating an additional mechanism contributing to the downregulation of DIDO transcripts. Altogether, our results demonstrate the existence of a potential interconnected regulatory mechanism between AURK and DIDO, associated with CIN and higher WBC counts in CLL. More importantly, the high expression levels of AURKs and the associated low levels of DIDO variants are specifically associated with cytogenetic abnormalities presenting chromosomal gains, highlighting the specific cellular mechanism underlying the CIN observed in this distinct CLL group. Given the central role of CIN in cancer genesis and progression, these findings will likely have an important impact on prognosis or treatment of CLL. Funded by: FAPESP, CNPq and CAPES. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-01-01
    Description: Homing of blood-borne lymphocytes to peripheral lymph nodes (PLNs) is a multistep process dependent on the sequential engagement of L-selectin, which mediates lymphocyte rolling along the luminal surface of high endothelial venules (HEVs), followed by activation of lymphocyte integrins and transmigration through HEVs. Within lymphoid tissue, B and T lymphocytes then migrate toward specific microenvironments such as B-cell follicles and the paracortex, respectively. The lymphocyte-expressed chemokine receptor CCR7 is playing an important role during this process, as its HEV-presented ligands CCL19 and CCL21 can trigger rapid integrin activation under flow in addition to inducing a chemotactic response, which may participate in transmigration and/or interstitial migration. Here, we report that Tyrphostin (Tyr) AG490, a pharmacological inhibitor of Janus family tyrosine kinases (Jaks), blocked the chemotactic response of primary mouse lymphocytes to CCL19 and CCL21 in a dose-dependent manner. Furthermore, Tyr AG490 inhibited rapid CCL21-mediated up-regulation of α4 and β2 integrin adhesiveness in static adhesion assays and under physiological flow, whereas adhesion induced by phorbol myristate acetate remained unaltered. Using intravital microscopy of subiliac PLNs in mice, we found that adoptively transferred Tyr AG490–treated lymphocytes adhered significantly less in HEVs compared with control cells, although L-selectin–mediated rolling was similar in both samples. Finally, we observed rapid Jak2 phosphorylation in CCL21-stimulated primary mouse lymphocytes. Thus, our study suggests a role for Jak tyrosine kinases during CCR7-mediated lymphocyte recirculation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-10-15
    Description: Natural killer (NK) cell activation is the result of a balance between positive and negative signals triggered by specific membrane receptors. We report here the activation of NK cells induced through the transmembrane glycoprotein CD43 (leukosialin, sialophorin). Engagement of CD43 by specific antibodies stimulated the secretion of the chemokines RANTES, macrophage inflammatory protein (MIP)-1, and MIP-1β, which was prevented by treatment of cells with the specific tyrosine kinase inhibitor genistein. Furthermore, signaling through CD43 increased the cytotoxic activity of NK cells and stimulated an increase in the tyrosine kinase activity in antiphosphotyrosine immune complexes of NK cell lysates. PYK-2 was identified among the tyrosine kinase proteins that become activated. Hence, PYK-2 activation was observed after 20 minutes of CD43 stimulation, reached a maximum after 45 to 60 minutes, and decreased to almost basal levels after 120 minutes of treatment. Together, these results demonstrate the role of CD43 as an activation molecule able to transduce positive activation signals in NK cells, including the regulation of chemokine synthesis, killing activity, and tyrosine kinase activation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-11-16
    Description: INTRODUCTION: Several studies have reported the presence of expanded T-cell clones in patients with multiple myeloma (MM), which could be involved in an anti-tumour response and extended survival. The Human Leukocyte Antigen (HLA) system seems to play an essential role in MM control and could influence disease control. This feature has been poorly studied and there are only few data favouring higher incidence of some HLA specifities such as B18 and B5 in myeloma patients. AIM: To compare HLA-DRB1 phenotypic frequencies in smoldering MM versus symptomatic MM patients and control individuals. PATIENTS: A total of 181 patients with a diagnosis of MM were analysed. According to their behaviour patients were classified into two subsets: 128 symptomatic MM who were homogeneously treated according to the GEM-2000 protocol (Spanish Myeloma Group/PETHEMA protocol) and 53 patients with the diagnosis of smoldering MM according to the criteria of the International Myeloma Working Group and who were free of therapy for at least 1 year following diagnosis. Additionally, 1818 healthy donor individuals from the Castilla y Leon registry for hematopoietic stem cell-transplantation were included as control population. All three populations involved Caucasian individuals. METHODS: After genomic DNA extraction, HLA-DRB1 typing at low-resolution level (two digits) was carried out using the PCR-rSSO methodology according to the standards of the European Federation of Immunogenetics. Allele frequencies were estimated by direct counting. Comparisons of allele and phenotype frequencies between populations were performed with the two-sided Fisher’s exact test using GraphPad Prism 4.0 Software. The strength of associations was estimated by the odds ratio (OR), and their 95% confidence intervals (CI) were calculated by Cornfield methods (values of p 〈 0.05 were considered statistically significant). P-value was corrected (Pc) for the number of valid comparisons made (Bonferroni correction). RESULTS: DRB1 phenotypic frequencies were not significantly different among MM patients and healthy control individual. In contrast, when the two MM cohorts were analyzed, DRB1*01 phenotypic frequencies were significantly higher in the smoldering patients as compared to symptomatic MM patients (37.7% vs. 14.1, p=0.0011, Pc=0.0143, OR: 3.7, 95% CI: 1.76–7.81). Furthermore, DRB1*01 phenotypic frequencies were significantly higher in the smoldering patients as compared to the healthy control individuals (37.7% vs. 21.7%, p=0.0106, Pc〉0.05, OR: 2.19, 95% CI: 1.24–3.86). In addition, symptomatic MM patients showed a higher incidence in DRB1*07 phenotypic frequencies as compared to control population (38.3% vs. 27.6%, p=0.0111, Pc〉0.05, OR: 1.63, 95% CI: 1.12–2.36). CONCLUSIONS: The present data suggest that HLA-DRB1*01 phenotype is associated with indolent MM and this may reflect a better ability to efficiently present myeloma-related antigens to immunocompetent cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-11-01
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-09-15
    Description: A high complete remission rate is currently achieved in patients with acute myeloid leukemia (AML). However, many patients eventually relapse due to the persistence of low numbers of residual leukemic cells that are undetectable by conventional cytomorphologic criteria (minimal residual disease [MRD]). Using immunophenotypic multiparametric flow cytometry, we have investigated in sequential studies (diagnosis and follow-up) the impact of MRD detection on the outcome of 53 AML patients that had achieved morphologic remission with standard AML protocols and displayed at diagnosis an aberrant phenotype. Patients were studied at diagnosis with a panel of 35 monoclonal antibodies in triple staining combinations for detection of aberrant or uncommon phenotypic features. According to these features, a patient's probe was custom-built at diagnosis for the identification of possible residual leukemic cells during follow-up. The level of MRD at the end of induction and intensification therapy correlated with the number of relapses and relapse-free survival (RFS). Thus, patients with more than 5 × 10−3 residual cells (5 residual cells among 1,000 normal bone marrow [BM] cells) identified as leukemic by immunophenotyping in the first remission BM showed a significant higher rate of relapse (67% v 20% for patients with less than 5 × 10−3 residual cells; P = .002) and a lower median RFS (17 months v not reached; P = .01). At the end of intensification, with a cut-off value of 2 × 10−3 leukemic cells, AML patients also separated into two distinct groups with relapse rates of 69% versus 32% (P = .02), respectively, and median RFS of 16 months versus not reached (P = .04). In addition, overall survival was also significantly related to the level of residual cells in the marrow obtained at the end of induction and particularly after intensification therapy (P = .008). Furthermore, we have explored whether residual disease was related with the functional expression of multidrug resistance (MDR-1) at diagnosis as assessed by the rhodamine-123 assay. Patients with ≥5 × 10−3 residual leukemic cells at the end of induction therapy had a significantly higher rhodamine-123 efflux (mean, 56% ± 24%) than those with less than 5 × 10−3 residual cells (mean, 32% ± 31%; P = .04). Finally, multivariate analysis showed that the number of residual cells at the end of induction or intensification therapy was the most important prognostic factor for prediction of RFS. Overall, our results show that immunophenotypical investigation of MRD strongly predicts outcome in patients with AML and that the number of residual leukemic cells correlates with multidrug resistance.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-04-01
    Description: AIM/CD69 is the earliest leukocyte activation antigen and is expressed mainly by activated T, B, and natural killer (NK) cells. It is also constitutively expressed by platelets, by bone marrow myeloid precursors, and by small subsets of resident lymphocytes in the secondary lymphoid tissues. The engagement of CD69 by specific antibodies induces intracellular signals, including Ca++ flux, cytokine synthesis, and cell proliferation. To investigate the physiological relevance of CD69, we generated mice deficient in CD69 (CD69-/-) by gene targeting in embryonic stem cells. CD69 (-/-) mice showed largely normal hematopoietic cell development and normal T-cell subpopulations in thymus and periphery. Furthermore, studies of negative- and positive-thymocyte selection using a T-cell receptor transgenic model demonstrated that these processes were not altered in CD69 (-/-) mice. In addition, natural killer and cytotoxic T lymphocyte cells from CD69-deficient mice displayed cytotoxic activity similar to that of wild-type mice. Interestingly, B-cell development was affected in the absence of CD69. The B220hiIgMneg bone marrow pre-B cell compartment was augmented in CD69 (-/-) mice. In addition, the absence of CD69 led to a slight increase in immunoglobulin (Ig) G2a and IgM responses to immunization with T-dependent and T-independent antigens. Nevertheless, CD69-deficient lymphocytes had a normal proliferative response to different T-cell and B-cell stimuli. Together, these observations indicate that CD69 plays a role in B-cell development and suggest that the putative stimulatory activity of this molecule on bone marrow-derived cells may be replaced in vivo by other signal transducing receptors.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-07-01
    Description: We studied the role of chemokine receptor CCR6 in acute graft-versus-host disease (GvHD), a pathology in which activated, host antigen-specific donor T cells selectively damage tissues such as skin, liver, and gut. GvHD incidence was reduced in major histocompatibility complex (MHC) class II–mismatched recipients of CD4+ T cells from CCR6-deficient donors. In MHC-matched/minor histocompatibility antigen–mismatched recipients of CD4+CD45RBhigh T cells from CCR6-deficient donors, infiltration of CD45+ and CD4+ cells to skin and gut, as well as lesion onset, were significantly delayed, and pathologic symptoms were milder. Consistent with this, in skin and gut of recipients of naive T cells from CCR6-deficient donors we observed lower levels of interferon γ (IFN-γ), interleukin 10 (IL-10), and the chemokines that control activated T-cell homing. We suggest a role for CCR6 in recruiting alloreactive CD4+ T cells to target tissues and identify CCR6 as a potential therapeutic target for GvHD.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-12-01
    Description: The chemokine CXCL12 influences self-renewal and differentiation of hematopoietic stem cell precursors in bone marrow by directing them toward specific stromalcell components. CXCL12 up-regulates members of the SOCS family through JAK/STAT activation, a mechanism that attenuates chemokine responses. SOCS expression may thus modulate retention of hematopoietic precursors (Sca-1+ c-Kit+Lin– cells) in bone marrow. We show that in bovine growth hormone transgenic mice and in growth hormone–treated mice, SOCS up-regulation correlated with a large number of Sca-1+ c-Kit+Lin– cells in blood. Retroviral transduction of SOCSs blocked in vitro migration of Sca-1+c-Kit+Lin– cells, as well as their capacity to reconstitute lethally irradiated mice. Furthermore, in lethally irradiated mice reconstituted with bone marrow infected by a tetracycline-regulated, SOCS-expressing lentiviral vector, doxycycline treatment promoted rapid, extensive precursor mobilization to the periphery. The results indicate that by blocking CXCR4-mediated functions, SOCSs modulate hematopoietic precursor cell retention in bone marrow, and suggest the therapeutic interest of SOCS manipulation in several pathologic situations.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2000-04-01
    Description: AIM/CD69 is the earliest leukocyte activation antigen and is expressed mainly by activated T, B, and natural killer (NK) cells. It is also constitutively expressed by platelets, by bone marrow myeloid precursors, and by small subsets of resident lymphocytes in the secondary lymphoid tissues. The engagement of CD69 by specific antibodies induces intracellular signals, including Ca++ flux, cytokine synthesis, and cell proliferation. To investigate the physiological relevance of CD69, we generated mice deficient in CD69 (CD69-/-) by gene targeting in embryonic stem cells. CD69 (-/-) mice showed largely normal hematopoietic cell development and normal T-cell subpopulations in thymus and periphery. Furthermore, studies of negative- and positive-thymocyte selection using a T-cell receptor transgenic model demonstrated that these processes were not altered in CD69 (-/-) mice. In addition, natural killer and cytotoxic T lymphocyte cells from CD69-deficient mice displayed cytotoxic activity similar to that of wild-type mice. Interestingly, B-cell development was affected in the absence of CD69. The B220hiIgMneg bone marrow pre-B cell compartment was augmented in CD69 (-/-) mice. In addition, the absence of CD69 led to a slight increase in immunoglobulin (Ig) G2a and IgM responses to immunization with T-dependent and T-independent antigens. Nevertheless, CD69-deficient lymphocytes had a normal proliferative response to different T-cell and B-cell stimuli. Together, these observations indicate that CD69 plays a role in B-cell development and suggest that the putative stimulatory activity of this molecule on bone marrow-derived cells may be replaced in vivo by other signal transducing receptors.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...