ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-01
    Description: This paper reports on an evaluation of the relative roles of choice of parameterization scheme and terrain representation in the Weather Research and Forecasting (WRF) mesoscale model, in the context of a regional wind resource assessment. As a first step, 32 configurations using two different schemes for microphysics, cumulus, planetary boundary layer (PBL), or shortwave and longwave radiation were evaluated. In a second step, wind estimates that were obtained from various experiments with different spatial resolution (1, 3, and 9 km) were assessed. Estimates were tested against data from four stations, located in southern Spain, that provided hourly wind speed and direction data at 40 m above ground level. Results from the first analysis showed that wind speed standard deviation (STD) and bias values were mainly sensitive to the PBL parameterization selection, with STD differences up to 10% and bias differences between −15% and 10%. The second analysis showed a weak influence of spatial resolution on the STD values. On the other hand, the bias was found to be highly sensitive to model spatial resolution. The sign of the bias depended on terrain morphology and the spatial resolution, but absolute values tended to be much higher with coarser spatial resolution. Physical configuration was found to have little impact on wind direction distribution estimates. In addition, these estimates proved to be more sensitive to the ability of WRF to represent the terrain morphology around the station than to the model spatial resolution itself.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-01
    Description: Electricity from wind and, to a lesser extent, solar energy is intermittent and not controllable. Unlike conventional power generation, therefore, this electricity is not suitable to supply base-load electric power. In the future, with greater penetration of these renewable sources, intermittency and control problems will become critical. Here, the authors explore the use of canonical correlation analysis (CCA) for analyzing spatiotemporal balancing between regional solar and wind energy resources. The CCA allows optimal distribution of wind farms and solar energy plants across a territory to minimize the variability of total energy input into the power supply system. The method was tested in the southern half of the Iberian Peninsula, a region covering about 350 000 km2. The authors used daily-integrated wind and solar energy estimates in 2007 from the Weather Research and Forecasting (WRF) mesoscale model, at a spatial resolution of 9 km. Results showed valuable balancing patterns in the study region, but with a marked seasonality in strength, sign, and spatial coverage. The autumn season showed the most noteworthy results, with a balancing pattern extending almost over the entire study region. With location of reference wind farms and photovoltaic (PV) plants according to the balancing patterns, their combined power production shows substantially lower variability than production of the wind farms and PV plants separately and combined production obtained with any other locations. Atmospheric circulations associated with the balancing patterns were found to be significantly different between seasons. In this regard, synoptic-scale variability played an important role, but so did topographic conditions, especially near the Strait of Gibraltar.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...