ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Akademia Kiado
    In:  Community Ecology, 19 (2). pp. 107-115.
    Publication Date: 2021-02-08
    Description: Food chains in the pelagic zones of oceans and lakes are longer than in terrestrial ecosystems. The perception of the pelagic food web has become increasingly complex by progressing from a linear food chain (phytoplankton – crustacean zooplankton – planktivorous fish – predatory fish) to a food web because of an increasing appreciation of microbial trophic pathways, side-tracks by gelatinous zooplankton and a high prevalence of omnivory. The range of predator:prey size ratios by far exceeds the traditionally assumed range of 10:1 to 100:1, from almost equal length to 105:1. The size ratios between primary consumers and top predators are 3½ orders of magnitude bigger in pelagic than in terrestrial food webs. Comparisons between different pelagic ecosystems support ecosystem size as an important factor regulating the maximal trophic level, while energy limitation of the number of trophic levels is less well supported. An almost 1:1 relationship between ingestion by predators and prey mortality and a better chemical match between primary producer and herbivore biomass are further distinctive features of the pelagic food web whose role in explaining the higher number of trophic levels in pelagic systems needs further examination.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Anthropic activities impact ecosystems worldwide thus contributing to the rapid erosion of biodiversity. The failure of traditional strategies targeting single species highlighted ecosystems as the most suitable scale to plan biodiversity management. Network analysis represents an ideal tool to model interactions in ecosystems and centrality indices have been extensively applied to quantify the structural and functional importance of species in food webs. However, many network studies fail in deciphering the ecological mechanisms that lead some species to occupy the most central positions in food webs. To address this question, we built a high-resolution food web of the Gulf of California and quantified species position using 15 centrality indices and the trophic level. We then modelled the values of each index as a function of traits and other attributes (e.g., habitat). We found that body size and mobility are the best predictors of indices that characterize species importance at local, meso- and global scale, especially in presence of data accounting for energy direction. This result extends previous findings that illustrated how a restricted set of traitaxes can predict whether two species interact in food webs. In particular, we show that traits can also help understanding the way species are affected by and mediate indirect effects. The traits allow focusing on the processes that shape the food web, rather than providing case-specific indications as the taxonomy-based approach. We suggest that future network studies should consider the traits to explicitly identify the causal relationships that link anthropic impacts to role changes of species in food webs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...