ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-02-27
    Description: The Sunda‐Banda arc transition at the eastern termination of the Sunda margin (Indonesia) represents a unique natural laboratory to study the effects of lower plate variability on upper plate deformational segmentation. Neighboring margin segments display a high degree of structural diversity of the incoming plate (transition from an oceanic to a continental lower plate, presence/absence of an oceanic plateau, variability of subducting seafloor morphology) as well as a wide range of corresponding fore‐arc structures, including a large sedimentary basin and an accretionary prism/outer arc high of variable size and shape. Here, we present results of a combined analysis of seismic wide‐angle refraction, multichannel streamer and gravity data recorded in two trench normal corridors located offshore the islands of Lombok (116°E) and Sumba (119°E). On the incoming plate, the results reveal a 8.6–9.0 km thick oceanic crust, which is progressively faulted and altered when approaching the trench, where upper mantle velocities are reduced to ∼7.5 km/s. The outer arc high, located between the trench and the fore‐arc basin, is characterized by sedimentary‐type velocities (Vp 〈 5.5 km/s) down to the top of the subducting slab (∼13 km depth). The oceanic slab can be traced over 70–100 km distance beneath the fore arc. A shallow serpentinized mantle wedge at ∼16 km depth offshore Lombok is absent offshore Sumba, where our models reveal the transition to the collisional regime farther to the east and to the Sumba block in the north. Our results allow a detailed view into the complex structure of both the deeper and shallower portions of the eastern Sunda margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 87 (17). pp. 165-172.
    Publication Date: 2017-02-23
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-12
    Description: The eastern Sunda arc represents one of the few regions globally where the early stages of continent-arc collision can be studied. We studied along the western limit of the collision zone at the Sunda-Banda arc transition, where the Australian margin collides with the Banda island arc, causing widespread back arc thrusting. We present integrated results of a refraction/wide-angle reflection tomography, gravity modeling, and multichannel reflection seismic imaging using data acquired in 2006 southeast of Sumba Island. The composite structural model reveals the previously unresolved deep geometry of the collision zone. Changes in crustal structure encompass the 10 - 12 km thick Australian basement in the south and the 22 - 24 kmthick Sumba ridge in the north, where backthrusting of the 130 km wide accretionary prism is documented. The structural diversity along this transect could be characteristic of young collisional systems at the transition from oceanic subduction to continent-arc collision. Citation: Shulgin, A., H. Kopp, C. Mueller, E. Lueschen, L. Planert, M. Engels, E. R. Flueh, A. Krabbenhoeft, and Y. Djajadihardja (2009), Sunda-Banda arc transition: Incipient continent-island arc collision (northwest Australia), Geophys. Res. Lett., 36, L10304, doi: 10.1029/2009GL037533.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: We study the structure and tectonics of the collision zone between the Nazca Ridge (NR) and the Peruvian margin constrained by seismic, gravimetric, bathymetric, and natural seismological data. The NR was formed in an on-ridge setting, and it is characterized by a smooth and broad shallow seafloor (swell) with an estimated buoyancy flux of ~7 Mg/s. The seismic results show that the NR hosts an oceanic lower crust 10–14 km thick with velocities of 7.2–7.5 km/s suggesting intrusion of magmatic material from the hot spot plume to the oceanic plate. Our results show evidence for subduction erosion in the frontal part of the margin likely enhanced by the collision of the NR. The ridge-trench collision zone correlates with the presence of a prominent normal scarp, a narrow continental slope, and (uplifted) shelf. In contrast, adjacent of the collision zone, the slope does not present a topographic scarp and the continental slope and shelf become wider and deeper. Geophysical and geodetic evidence indicate that the collision zone is characterized by low seismic coupling at the plate interface. This is consistent with vigorous subduction erosion enhanced by the subducting NR causing abrasion and increase of fluid pore pressure at the interplate contact. Furthermore, the NR has behaved as a barrier for rupture propagation of megathrust earthquakes (e.g., 1746 Mw 8.6 and 1942 Mw 8.1 events). In contrast, for moderate earthquakes (e.g., 1996 Mw 7.7 and 2011 Mw 6.9 events), the NR has behaved as a seismic asperity nucleating at depths 〉20 km.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The giant tsunami that swept the Pacific from Alaska to Antarctica in 1946, was generated along one of three Alaska Trench instrumentally recorded aftershock areas following great and giant earthquakes. Aftershock areas were investigated during the past decade with multibeam bathymetry, OBS wide‐angle seismic, reprocessed legacy and new seismic reflection images. Summarized and updated here are previous papers and additional data. Tectonic structures collocated with aftershock area boundaries indicate possible lengths of rupture in future great earthquakes. NE aftershock area boundaries relate to subducted lower plate structures whereas the SW zone upper plate retains Beringian structural relicts. The lower to middle slope transition separating a stronger continental framework rock from a weaker accreted prism occurs along splay fault zones previously interpreted as backstops in seismic images. Damage zones along splay faults are generally 1 km wide dipping typically 21°. Splays form slip paths from the plate interface to the seafloor much shorter than the 3° to 4° dipping plate interface beneath the frontal prism. Associated seafloor vent structures indicate overpressured fluids at depth. Splay fault dip and its rigid hanging wall impart greater seafloor uplift than the accreted prism per unit of slip making them effective tsunami generators. Backstop splay fault zones run along the entire Alaska Trench. Beneath the frontal prism, active bend faults add rugosity to the plate interface and km high relief is commonly imaged in reprocessed legacy and new seismic data. The 1946 Unimak great (M8.6) earthquake epicenter is located near the backstop splay fault zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-14
    Description: The Nazca Ridge (NR) was formed near the interaction of a hotspot mantle plume and an active spreading center. We use active-source wide-angle seismic data to obtain 2-D Vp and Vs tomographic models, and hence the Poisson's ratio (ν) structure beneath the NR. Results show a ∼2 km thick seismic layer 2A with ν values of 0.25–0.32 in the uppermost crust interpreted as pillow basalts with a low degree of fracturing and/or hydrothermal alteration. The 2A/B boundary layer presents ν values of 0.27–0.29 consistent with pillow basalts/sheeted dykes units. A ∼3 km layer 2B overlies a ∼10 km layer 3 with ν values of 0.24–0.3 at the 2/3 boundary layer. The lowermost layer 3 presents ν values of 0.28 ± 0.02 suggesting an increase in Mg content (≥10% wt). The NR crust (∼15 km thick) requires an increment of the asthenospheric mantle potential temperature in ∼100°C formed by passive adiabatic decompression melting.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...